These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 15759741)
1. Carrier tests to assess microbicidal activities of chemical disinfectants for use on medical devices and environmental surfaces. Springthorpe VS; Sattar SA J AOAC Int; 2005; 88(1):182-201. PubMed ID: 15759741 [TBL] [Abstract][Full Text] [Related]
2. Broad-spectrum microbicidal activity, toxicologic assessment, and materials compatibility of a new generation of accelerated hydrogen peroxide-based environmental surface disinfectant. Omidbakhsh N; Sattar SA Am J Infect Control; 2006 Jun; 34(5):251-7. PubMed ID: 16765201 [TBL] [Abstract][Full Text] [Related]
3. Application of a quantitative carrier test to evaluate microbicides against mycobacteria. Springthorpe VS; Sattar SA J AOAC Int; 2007; 90(3):817-24. PubMed ID: 17580635 [TBL] [Abstract][Full Text] [Related]
4. Activity of selected oxidizing microbicides against the spores of Clostridium difficile: relevance to environmental control. Perez J; Springthorpe VS; Sattar SA Am J Infect Control; 2005 Aug; 33(6):320-5. PubMed ID: 16061137 [TBL] [Abstract][Full Text] [Related]
5. [Aerosol disinfection of bacterial spores]. Theilen U; Wilsberg FJ; Böhm R; Strauch D Zentralbl Bakteriol Mikrobiol Hyg B Umwelthyg Krankenhaushyg Arbeitshyg Prav Med; 1987 Jun; 184(3-4):229-52. PubMed ID: 3116785 [TBL] [Abstract][Full Text] [Related]
6. Antimicrobial efficacy and compatibility of solid copper alloys with chemical disinfectants. Steinhauer K; Meyer S; Pfannebecker J; Teckemeyer K; Ockenfeld K; Weber K; Becker B PLoS One; 2018; 13(8):e0200748. PubMed ID: 30096209 [TBL] [Abstract][Full Text] [Related]
7. In vitro production of Clostridium difficile spores for use in the efficacy evaluation of disinfectants: a precollaborative investigation. Hasan JA; Japal KM; Christensen ER; Samalot-Freire LC J AOAC Int; 2011; 94(1):259-72. PubMed ID: 21391503 [TBL] [Abstract][Full Text] [Related]
8. Surface Disinfectants for Burn Units Evaluated by a New Double Method, Using Microorganisms Recently Isolated From Patients, on a Surface Germ-Carrier Model. Herruzo R; Vizcaino MJ; Herruzo I; Sanchez M J Burn Care Res; 2017; 38(3):e663-e669. PubMed ID: 27685810 [TBL] [Abstract][Full Text] [Related]
9. Promises and pitfalls of recent advances in chemical means of preventing the spread of nosocomial infections by environmental surfaces. Sattar SA Am J Infect Control; 2010 Jun; 38(5 Suppl 1):S34-40. PubMed ID: 20569854 [TBL] [Abstract][Full Text] [Related]
10. Surface-Dried Viruses Can Resist Glucoprotamin-Based Disinfection. Zeitler B; Rapp I Appl Environ Microbiol; 2014 Dec; 80(23):7169-75. PubMed ID: 25217017 [TBL] [Abstract][Full Text] [Related]
11. A disc-based quantitative carrier test method to assess the virucidal activity of chemical germicides. Sattar SA; Springthorpe VS; Adegbunrin O; Zafer AA; Busa M J Virol Methods; 2003 Sep; 112(1-2):3-12. PubMed ID: 12951207 [TBL] [Abstract][Full Text] [Related]
12. Decontaminating surfaces with atomized disinfectants generated by a novel thickness-mode lithium niobate device. Kumaraswamy M; Collignon S; Do C; Kim J; Nizet V; Friend J Appl Microbiol Biotechnol; 2018 Aug; 102(15):6459-6467. PubMed ID: 29804135 [TBL] [Abstract][Full Text] [Related]
13. Disinfection and Sterilization in Health Care Facilities: An Overview and Current Issues. Rutala WA; Weber DJ Infect Dis Clin North Am; 2021 Sep; 35(3):575-607. PubMed ID: 34362535 [TBL] [Abstract][Full Text] [Related]
14. Nano-TiO2-based photocatalytic disinfection of environmental surfaces contaminated by meticillin-resistant Staphylococcus aureus. Petti S; Messano GA J Hosp Infect; 2016 May; 93(1):78-82. PubMed ID: 26996090 [TBL] [Abstract][Full Text] [Related]
15. Persistent silver disinfectant for the environmental control of pathogenic bacteria. Brady MJ; Lisay CM; Yurkovetskiy AV; Sawan SP Am J Infect Control; 2003 Jun; 31(4):208-14. PubMed ID: 12806357 [TBL] [Abstract][Full Text] [Related]
16. Decontamination of high-touch environmental surfaces (HITES) by wiping: quantitative assessment of a carrier platform simulating pathogen removal, inactivation and transfer in the field. Zargar B; Sattar SA Lett Appl Microbiol; 2023 Feb; 76(2):. PubMed ID: 36763781 [TBL] [Abstract][Full Text] [Related]
17. Theoretical and experimental aspects of microbicidal activities of hard surface disinfectants: are their label claims based on testing under field conditions? Omidbakhsh N J AOAC Int; 2010; 93(6):1944-51. PubMed ID: 21313824 [TBL] [Abstract][Full Text] [Related]
18. Effectiveness of commercial disinfectants for inactivating hepatitis A virus on agri-food surfaces. Jean J; Vachon JF; Moroni O; Darveau A; Kukavica-Ibrulj I; Fliss I J Food Prot; 2003 Jan; 66(1):115-9. PubMed ID: 12540190 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of AISI Type 304 stainless steel as a suitable surface material for evaluating the efficacy of peracetic acid-based disinfectants against Clostridium difficile spores. Black E; Owens K; Staub R; Li J; Mills K; Valenstein J; Hilgren J PLoS One; 2017; 12(10):e0187074. PubMed ID: 29065168 [TBL] [Abstract][Full Text] [Related]
20. Testing chemical germicides against Candida species using quantitative carrier and fingerpad methods. Traoré O; Springthorpe VS; Sattar SA J Hosp Infect; 2002 Jan; 50(1):66-75. PubMed ID: 11825054 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]