BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 15759882)

  • 1. [Growth feature of biomass of Lemna aequinoctialis and Spirodela polyrrhiza in medium with nutrient character of wastewater].
    Chong YX; Hu HY; Qian Y
    Huan Jing Ke Xue; 2004 Nov; 25(6):59-64. PubMed ID: 15759882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effect of environment and nutrient factors on the content of nitrogen and phosphorus in two duckweeds species: Spirodela polyrrhiza and Lemna aequinoctialis].
    Chong YX; Hu HY; Qian Y
    Huan Jing Ke Xue; 2005 Sep; 26(5):67-71. PubMed ID: 16366472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effect of inorganic nitrogen compounds and pH on the growth of duckweed].
    Chong Y; Hu H; Qian Y
    Huan Jing Ke Xue; 2003 Jul; 24(4):35-40. PubMed ID: 14551954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale screening and characterisation of Lemna aequinoctialis and Spirodela polyrhiza strains for starch production.
    Ma YB; Zhu M; Yu CJ; Wang Y; Liu Y; Li ML; Sun YD; Zhao JS; Zhou GK
    Plant Biol (Stuttg); 2018 Mar; 20(2):357-364. PubMed ID: 29222918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced biomass production of duckweeds by inoculating a plant growth-promoting bacterium, Acinetobacter calcoaceticus P23, in sterile medium and non-sterile environmental waters.
    Toyama T; Kuroda M; Ogata Y; Hachiya Y; Quach A; Tokura K; Tanaka Y; Mori K; Morikawa M; Ike M
    Water Sci Technol; 2017 Sep; 76(5-6):1418-1428. PubMed ID: 28953468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The logistic growth of duckweed (Lemna minor) and kinetics of ammonium uptake.
    Zhang K; Chen YP; Zhang TT; Zhao Y; Shen Y; Huang L; Gao X; Guo JS
    Environ Technol; 2014; 35(5-8):562-7. PubMed ID: 24645435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growing duckweed in swine wastewater for nutrient recovery and biomass production.
    Xu J; Shen G
    Bioresour Technol; 2011 Jan; 102(2):848-53. PubMed ID: 20869239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Positive effects of duckweed polycultures on starch and protein accumulation.
    Li Y; Zhang F; Daroch M; Tang J
    Biosci Rep; 2016 Oct; 36(5):. PubMed ID: 27515418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boron removal by the duckweed Lemna gibba: a potential method for the remediation of boron-polluted waters.
    Del-Campo Marín CM; Oron G
    Water Res; 2007 Dec; 41(20):4579-84. PubMed ID: 17643472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of duckweed species diversity on biomass productivity and nutrient removal efficiency in swine wastewater.
    Zhao Z; Shi H; Liu Y; Zhao H; Su H; Wang M; Zhao Y
    Bioresour Technol; 2014 Sep; 167():383-9. PubMed ID: 24998479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nutrient recovery from swine waste and protein biomass production using duckweed ponds (Landoltia punctata): southern Brazil.
    Mohedano RA; Velho VF; Costa RH; Hofmann SM; Belli Filho P
    Water Sci Technol; 2012; 65(11):2042-8. PubMed ID: 22592476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfamethoxazole removal and fuel-feedstock biomass production from wastewater in a phyto-Fenton process using duckweed culture.
    Toyama T; Kobayashi M; Rubiy Atno ; Morikawa M; Mori K
    Chemosphere; 2024 Aug; 361():142592. PubMed ID: 38866331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pilot-scale comparison of four duckweed strains from different genera for potential application in nutrient recovery from wastewater and valuable biomass production.
    Zhao Y; Fang Y; Jin Y; Huang J; Bao S; Fu T; He Z; Wang F; Wang M; Zhao H
    Plant Biol (Stuttg); 2015 Jan; 17 Suppl 1():82-90. PubMed ID: 24942851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The capacity of duckweed to treat wastewater: ecological considerations for a sound design.
    Körner S; Vermaat JE; Veenstra S
    J Environ Qual; 2003; 32(5):1583-90. PubMed ID: 14535298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive modeling of mat density effect on duckweed (Lemna minor) growth under controlled eutrophication.
    Frédéric M; Samir L; Louise M; Abdelkrim A
    Water Res; 2006 Aug; 40(15):2901-10. PubMed ID: 16854449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of bioethanol from four species of duckweeds (
    Faizal A; Sembada AA; Priharto N
    Saudi J Biol Sci; 2021 Jan; 28(1):294-301. PubMed ID: 33424309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bio-accumulation and toxicity of lead (Pb) in Lemna gibba L (duckweed).
    Sobrino AS; Miranda MG; Alvarez C; Quiroz A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(1):107-10. PubMed ID: 20390849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of selected emerging PPCP compounds using greater duckweed (Spirodela polyrhiza) based lab-scale free water constructed wetland.
    Li J; Zhou Q; Campos LC
    Water Res; 2017 Dec; 126():252-261. PubMed ID: 28961493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of duckweed cultivation with sewage water and SH media for production of fuel ethanol.
    Yu C; Sun C; Yu L; Zhu M; Xu H; Zhao J; Ma Y; Zhou G
    PLoS One; 2014; 9(12):e115023. PubMed ID: 25517893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental study and modelling of Cr (VI) removal from wastewater using Lemna minor.
    Oporto C; Arce O; Van den Broeck E; Van der Bruggen B; Vandecasteele C
    Water Res; 2006 Apr; 40(7):1458-64. PubMed ID: 16540144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.