These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 15760053)

  • 1. Stabilized nanoparticles of phytosterol by rapid expansion from supercritical solution into aqueous solution.
    Türk M; Lietzow R
    AAPS PharmSciTech; 2004 Sep; 5(4):e56. PubMed ID: 15760053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phospholipid-stabilized nanoparticles of cyclosporine A by rapid expansion from supercritical to aqueous solution.
    Young TJ; Johnson KP; Pace GW; Mishra AK
    AAPS PharmSciTech; 2004 Feb; 5(1):E11. PubMed ID: 15198532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid expansion from supercritical to aqueous solution to produce submicron suspensions of water-insoluble drugs.
    Young TJ; Mawson S; Johnston KP; Henriksen IB; Pace GW; Mishra AK
    Biotechnol Prog; 2000; 16(3):402-7. PubMed ID: 10835242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanosizing drug particles in supercritical fluid processing.
    Pathak P; Meziani MJ; Desai T; Sun YP
    J Am Chem Soc; 2004 Sep; 126(35):10842-3. PubMed ID: 15339159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of nanoparticles of Magnolia bark extract by rapid expansion from supercritical solution into aqueous solutions.
    He S; Zhou B; Zhang S; Lei Z; Zhang Z
    J Microencapsul; 2011; 28(3):183-9. PubMed ID: 21425944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supercritical fluid processing of drug nanoparticles in stable suspension.
    Pathak P; Meziani MJ; Desai T; Foster C; Diaz JA; Sun YP
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2542-5. PubMed ID: 17663280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes. Part I: Micronization of neat particles.
    Perrut M; Jung J; Leboeuf F
    Int J Pharm; 2005 Jan; 288(1):3-10. PubMed ID: 15607252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of phenytoin nanoparticles using rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process.
    Thakur R; Gupta RB
    Int J Pharm; 2006 Feb; 308(1-2):190-9. PubMed ID: 16352406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A combinational supercritical CO2 system for nanoparticle preparation of indomethacin.
    Tozuka Y; Miyazaki Y; Takeuchi H
    Int J Pharm; 2010 Feb; 386(1-2):243-8. PubMed ID: 19895877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soft matter dispersions with ordered inner structures, stabilized by ethoxylated phytosterols.
    Libster D; Aserin A; Yariv D; Shoham G; Garti N
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):202-15. PubMed ID: 19682869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical size of crystalline ZrO(2) nanoparticles synthesized in near- and supercritical water and supercritical isopropyl alcohol.
    Becker J; Hald P; Bremholm M; Pedersen JS; Chevallier J; Iversen SB; Iversen BB
    ACS Nano; 2008 May; 2(5):1058-68. PubMed ID: 19206504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability and aerodynamic behaviour of glucocorticoid particles prepared by a supercritical fluids process.
    Velaga SP; Bergh S; Carlfors J
    Eur J Pharm Sci; 2004 Mar; 21(4):501-9. PubMed ID: 14998581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supercritical assisted atomization: a novel technology for microparticles preparation of an asthma-controlling drug.
    Della Porta G; De Vittori C; Reverchon E
    AAPS PharmSciTech; 2005 Oct; 6(3):E421-8. PubMed ID: 16354000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The formation of fluorinated tetraphenylporphyrin nanoparticles via rapid expansion processes: RESS vs RESOLV.
    Sane A; Thies MC
    J Phys Chem B; 2005 Oct; 109(42):19688-95. PubMed ID: 16853546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of solid lipid nanoparticle suspensions using supercritical fluid extraction of emulsions (SFEE) for pulmonary delivery using the AERx system.
    Chattopadhyay P; Shekunov BY; Yim D; Cipolla D; Boyd B; Farr S
    Adv Drug Deliv Rev; 2007 Jul; 59(6):444-53. PubMed ID: 17582648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique.
    Murdock RC; Braydich-Stolle L; Schrand AM; Schlager JJ; Hussain SM
    Toxicol Sci; 2008 Feb; 101(2):239-53. PubMed ID: 17872897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of uniform rich cholesterol unilamellar nanovesicles using CO2-expanded solvents.
    Cano-Sarabia M; Ventosa N; Sala S; Patiño C; Arranz R; Veciana J
    Langmuir; 2008 Mar; 24(6):2433-7. PubMed ID: 18229961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Preparation of nanopaticles of SCF-CO2 extraction of Magnolia officinalis].
    He S; Zhang S; Lei Z; Zhang Z
    Zhongguo Zhong Yao Za Zhi; 2009 Feb; 34(4):390-3. PubMed ID: 19459296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of cromolyn sodium microparticles for aerosol delivery by supercritical assisted atomization.
    Reverchon E; Adami R; Caputo G
    AAPS PharmSciTech; 2007 Dec; 8(4):E114. PubMed ID: 18181535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and pharmacokinetics of coenzyme Q10 nanoparticles prepared by a rapid expansion of supercritical solution process.
    Meng X; Zu Y; Zhao X; Li Q; Jiang S; Sang M
    Pharmazie; 2012 Feb; 67(2):161-7. PubMed ID: 22512087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.