BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 15760172)

  • 1. Formation of compound I by photo-oxidation of compound II.
    Zhang R; Chandrasena RE; Martinez E; Horner JH; Newcomb M
    Org Lett; 2005 Mar; 7(6):1193-5. PubMed ID: 15760172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic studies of reactions of iron(IV)-oxo porphyrin radical cations with organic reductants.
    Pan Z; Zhang R; Newcomb M
    J Inorg Biochem; 2006 Apr; 100(4):524-32. PubMed ID: 16500709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser flash photolysis generation and kinetic studies of porphyrin-manganese-oxo intermediates. Rate constants for oxidations effected by porphyrin-Mn(V)-oxo species and apparent disproportionation equilibrium constants for porphyrin-Mn(IV)-oxo species.
    Zhang R; Horner JH; Newcomb M
    J Am Chem Soc; 2005 May; 127(18):6573-82. PubMed ID: 15869278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the Compound I-like reactivity of a bare high-valent oxo iron porphyrin complex: the oxidation of tertiary amines.
    Chiavarino B; Cipollini R; Crestoni ME; Fornarini S; Lanucara F; Lapi A
    J Am Chem Soc; 2008 Mar; 130(10):3208-17. PubMed ID: 18278912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser flash photolysis formation and direct kinetic studies of manganese(V)-oxo porphyrin intermediates.
    Zhang R; Newcomb M
    J Am Chem Soc; 2003 Oct; 125(41):12418-9. PubMed ID: 14531679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and initial characterization of the compound I, II, and III states of iron methylchlorin-reconstituted horseradish peroxidase and myoglobin: models for key intermediates in iron chlorin enzymes.
    Coulter ED; Cheek J; Ledbetter AP; Chang CK; Dawson JH
    Biochem Biophys Res Commun; 2000 Dec; 279(3):1011-5. PubMed ID: 11162466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of high-oxidation states of myoglobin in the nanosecond time-scale by laser photoionization.
    Candeias LP; Steenken S
    Photochem Photobiol; 1998 Jul; 68(1):39-43. PubMed ID: 9679449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure and peroxidase activity of myoglobin reconstituted with iron porphycene.
    Hayashi T; Murata D; Makino M; Sugimoto H; Matsuo T; Sato H; Shiro Y; Hisaeda Y
    Inorg Chem; 2006 Dec; 45(26):10530-6. PubMed ID: 17173408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic insight into formation of oxo-iron(IV) porphyrin pi-cation radicals from enzyme mimics of cytochrome P450 in organic solvents.
    Hessenauer-Ilicheva N; Franke A; Meyer D; Woggon WD; van Eldik R
    Chemistry; 2009; 15(12):2941-59. PubMed ID: 19185039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic studies on peroxide activation by a water-soluble iron(III)-porphyrin: implications for O-O bond activation in aqueous and nonaqueous solvents.
    Wolak M; van Eldik R
    Chemistry; 2007; 13(17):4873-83. PubMed ID: 17366654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonance Raman spectroscopy of oxoiron(IV) porphyrin pi-cation radical and oxoiron(IV) hemes in peroxidase intermediates.
    Terner J; Palaniappan V; Gold A; Weiss R; Fitzgerald MM; Sullivan AM; Hosten CM
    J Inorg Biochem; 2006 Apr; 100(4):480-501. PubMed ID: 16513173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alternatives to the oxoferryl porphyrin cation radical as the proposed reactive intermediate of cytochrome P450: two-electron oxidized Fe(III) porphyrin derivatives.
    Watanabe Y
    J Biol Inorg Chem; 2001 Oct; 6(8):846-56. PubMed ID: 11713692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Meso-unsubstituted iron corrole in hemoproteins: remarkable differences in effects on peroxidase activities between myoglobin and horseradish peroxidase.
    Matsuo T; Hayashi A; Abe M; Matsuda T; Hisaeda Y; Hayashi T
    J Am Chem Soc; 2009 Oct; 131(42):15124-5. PubMed ID: 19810701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photochemical generation of a highly reactive iron-oxo intermediate. A true iron(V)-oxo species?
    Harischandra DN; Zhang R; Newcomb M
    J Am Chem Soc; 2005 Oct; 127(40):13776-7. PubMed ID: 16201783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic investigations of the reaction of an iron(III) octa-anionic porphyrin complex with hydrogen peroxide and the catalyzed oxidation of diammonium-2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate).
    Brausam A; Eigler S; Jux N; van Eldik R
    Inorg Chem; 2009 Aug; 48(16):7667-78. PubMed ID: 19601585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerobic catalytic photooxidation of olefins by an electron-deficient Pacman bisiron(III) mu-oxo porphyrin.
    Rosenthal J; Pistorio BJ; Chng LL; Nocera DG
    J Org Chem; 2005 Mar; 70(5):1885-8. PubMed ID: 15730314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-driven horseradish peroxidase cycle by using photo-activated methylene blue as the reducing agent.
    Soares VA; Severino D; Junqueira HC; Tersariol IL; Shida CS; Baptista MS; Nascimento OR; Nantes IL
    Photochem Photobiol; 2007; 83(5):1254-62. PubMed ID: 17880521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-valent iron in chemical and biological oxidations.
    Groves JT
    J Inorg Biochem; 2006 Apr; 100(4):434-47. PubMed ID: 16516297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The reaction mechanism of plant peroxidases.
    Longu S; Medda R; Padiglia A; Pedersen JZ; Floris G
    Ital J Biochem; 2004 Mar; 53(1):41-5. PubMed ID: 15356961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EPR and ENDOR studies of cryoreduced compounds II of peroxidases and myoglobin. Proton-coupled electron transfer and protonation status of ferryl hemes.
    Davydov R; Osborne RL; Kim SH; Dawson JH; Hoffman BM
    Biochemistry; 2008 May; 47(18):5147-55. PubMed ID: 18407661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.