These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 15760179)

  • 1. Nuclear amination catalyzed by fungal laccases: reaction products of p-hydroquinones and primary aromatic amines.
    Niedermeyer TH; Mikolasch A; Lalk M
    J Org Chem; 2005 Mar; 70(6):2002-8. PubMed ID: 15760179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laccase-catalyzed carbon-nitrogen bond formation: coupling and derivatization of unprotected L-phenylalanine with different para-hydroquinones.
    Hahn V; Mikolasch A; Manda K; Gördes D; Thurow K; Schauer F
    Amino Acids; 2009 Jul; 37(2):315-21. PubMed ID: 18695937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laccase-induced C-N coupling of substituted p-hydroquinones with p-aminobenzoic acid in comparison with known chemical routes.
    Mikolasch A; Matthies A; Lalk M; Schauer F
    Appl Microbiol Biotechnol; 2008 Sep; 80(3):389-97. PubMed ID: 18668239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diamination by N-coupling using a commercial laccase.
    Wellington KW; Steenkamp P; Brady D
    Bioorg Med Chem; 2010 Feb; 18(4):1406-14. PubMed ID: 20122836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laccases: structure, reactions, distribution.
    Claus H
    Micron; 2004; 35(1-2):93-6. PubMed ID: 15036303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laccase-catalyzed domino reactions between hydroquinones and cyclic 1,3-dicarbonyls for the regioselective synthesis of substituted p-benzoquinones.
    Hajdok S; Conrad J; Beifuss U
    J Org Chem; 2012 Jan; 77(1):445-59. PubMed ID: 22117114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fungal laccases - occurrence and properties.
    Baldrian P
    FEMS Microbiol Rev; 2006 Mar; 30(2):215-42. PubMed ID: 16472305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comprehensive kinetic model of laccase-catalyzed oxidation of aqueous phenol.
    Kurniawati S; Nicell JA
    Biotechnol Prog; 2009; 25(3):763-73. PubMed ID: 19496113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Laccase of the lignolytic fungus Trametes hirsuta: purification and characterization of the enzyme, and cloning and primary structure of the gene].
    Rebrikov DV; Stepanova EV; Koroleva OV; Budarina ZhI; Zakharova MV; Iurkova TV; Solonin AS; Belova OV; Pozhidaeva ZA; Leont'evskiĭ AA
    Prikl Biokhim Mikrobiol; 2006; 42(6):645-53. PubMed ID: 17168293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon-oxygen bond formation by fungal laccases: cross-coupling of 2,5-dihydroxy-N-(2-hydroxyethyl)-benzamide with the solvents water, methanol, and other alcohols.
    Manda K; Gördes D; Mikolasch A; Hammer E; Schmidt E; Thurow K; Schauer F
    Appl Microbiol Biotechnol; 2007 Aug; 76(2):407-16. PubMed ID: 17576553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the reactions of two fungal laccases differing in their redox potential with lignin model compounds: products and their rate of formation.
    Lahtinen M; Kruus K; Heinonen P; Sipilä J
    J Agric Food Chem; 2009 Sep; 57(18):8357-65. PubMed ID: 19702333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-linking proteins by laccase-catalyzed oxidation: importance relative to other modifications.
    Steffensen CL; Andersen ML; Degn PE; Nielsen JH
    J Agric Food Chem; 2008 Dec; 56(24):12002-10. PubMed ID: 19053390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo synthesis of Troc-protected amines: intermolecular rhodium-catalyzed C-H amination with N-tosyloxycarbamates.
    Lebel H; Huard K
    Org Lett; 2007 Feb; 9(4):639-42. PubMed ID: 17243710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laccase-catalyzed cross-linking of amino acids and peptides with dihydroxylated aromatic compounds.
    Mikolasch A; Hahn V; Manda K; Pump J; Illas N; Gördes D; Lalk M; Gesell Salazar M; Hammer E; Jülich WD; Rawer S; Thurow K; Lindequist U; Schauer F
    Amino Acids; 2010 Aug; 39(3):671-83. PubMed ID: 20143113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of mediators on laccase catalyzed radical formation in lignin.
    Munk L; Andersen ML; Meyer AS
    Enzyme Microb Technol; 2018 Sep; 116():48-56. PubMed ID: 29887016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhodium-catalyzed regioselective amination of secondary allylic trichloroacetimidates with unactivated aromatic amines.
    Arnold JS; Stone RF; Nguyen HM
    Org Lett; 2010 Oct; 12(20):4580-3. PubMed ID: 20843019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mild and efficient copper-catalyzed amination of aryl bromides with primary alkylamines.
    Kwong FY; Buchwald SL
    Org Lett; 2003 Mar; 5(6):793-6. PubMed ID: 12633073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of physico-chemical characteristics of four laccases from different basidiomycetes.
    Shleev SV; Morozova OV; Nikitina OV; Gorshina ES; Rusinova TV; Serezhenkov VA; Burbaev DS; Gazaryan IG; Yaropolov AI
    Biochimie; 2004; 86(9-10):693-703. PubMed ID: 15556280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of primary amines from secondary and tertiary amines: ruthenium-catalyzed amination using ammonia.
    Bähn S; Imm S; Neubert L; Zhang M; Neumann H; Beller M
    Chemistry; 2011 Apr; 17(17):4705-8. PubMed ID: 21465590
    [No Abstract]   [Full Text] [Related]  

  • 20. Palladium-catalyzed allylic amination using aqueous ammonia for the synthesis of primary amines.
    Nagano T; Kobayashi S
    J Am Chem Soc; 2009 Apr; 131(12):4200-1. PubMed ID: 19265379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.