These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 15761207)

  • 1. Abiotic stress tolerance in grasses. From model plants to crop plants.
    Tester M; Bacic A
    Plant Physiol; 2005 Mar; 137(3):791-3. PubMed ID: 15761207
    [No Abstract]   [Full Text] [Related]  

  • 2. Parallelism and convergence in post-domestication adaptation in cereal grasses.
    Woodhouse MR; Hufford MB
    Philos Trans R Soc Lond B Biol Sci; 2019 Jul; 374(1777):20180245. PubMed ID: 31154975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative view of the evolution of grasses under domestication.
    Glémin S; Bataillon T
    New Phytol; 2009; 183(2):273-290. PubMed ID: 19515223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hormone balance and abiotic stress tolerance in crop plants.
    Peleg Z; Blumwald E
    Curr Opin Plant Biol; 2011 Jun; 14(3):290-5. PubMed ID: 21377404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches.
    Sreenivasulu N; Sopory SK; Kavi Kishor PB
    Gene; 2007 Feb; 388(1-2):1-13. PubMed ID: 17134853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops.
    Zhang JZ; Creelman RA; Zhu JK
    Plant Physiol; 2004 Jun; 135(2):615-21. PubMed ID: 15173567
    [No Abstract]   [Full Text] [Related]  

  • 7. Targeting metabolic pathways for genetic engineering abiotic stress-tolerance in crops.
    Reguera M; Peleg Z; Blumwald E
    Biochim Biophys Acta; 2012 Feb; 1819(2):186-94. PubMed ID: 21867784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic analysis of abiotic stress tolerance in crops.
    Roy SJ; Tucker EJ; Tester M
    Curr Opin Plant Biol; 2011 Jun; 14(3):232-9. PubMed ID: 21478049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Achieving crop stress tolerance and improvement--an overview of genomic techniques.
    Rasool S; Ahmad P; Rehman MU; Arif A; Anjum NA
    Appl Biochem Biotechnol; 2015 Dec; 177(7):1395-408. PubMed ID: 26440315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Elevated atmospheric CO2 and crop/weed competition].
    Zeng Q; Zhu J
    Ying Yong Sheng Tai Xue Bao; 2002 Oct; 13(10):1339-43. PubMed ID: 12557687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging trends in the functional genomics of the abiotic stress response in crop plants.
    Vij S; Tyagi AK
    Plant Biotechnol J; 2007 May; 5(3):361-80. PubMed ID: 17430544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance.
    Divi UK; Krishna P
    N Biotechnol; 2009 Oct; 26(3-4):131-6. PubMed ID: 19631770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing drought tolerance in C(4) crops.
    Lopes MS; Araus JL; van Heerden PD; Foyer CH
    J Exp Bot; 2011 May; 62(9):3135-53. PubMed ID: 21511912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant genetics. Finding new ways to protect drought-stricken plants.
    Moffat AS
    Science; 2002 May; 296(5571):1226-9. PubMed ID: 12016289
    [No Abstract]   [Full Text] [Related]  

  • 15. Salinity tolerance turfgrass: history and prospects.
    Uddin MK; Juraimi AS
    ScientificWorldJournal; 2013; 2013():409413. PubMed ID: 24222734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repeated evolution of salt-tolerance in grasses.
    Bennett TH; Flowers TJ; Bromham L
    Biol Lett; 2013 Apr; 9(2):20130029. PubMed ID: 23445947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Challenges and perspectives to improve crop drought and salinity tolerance.
    Cominelli E; Conti L; Tonelli C; Galbiati M
    N Biotechnol; 2013 May; 30(4):355-61. PubMed ID: 23165101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perennial grass rotation: an effective and challenging tactic for nematode management with many other positive effects.
    Katsvairo TW; Rich JR; Dunn RA
    Pest Manag Sci; 2006 Sep; 62(9):793-6. PubMed ID: 16789047
    [No Abstract]   [Full Text] [Related]  

  • 19. [Plant physiological and molecular biological mechanism in response to aluminium toxicity].
    Liu Q; Zheng S; Lin X
    Ying Yong Sheng Tai Xue Bao; 2004 Sep; 15(9):1641-9. PubMed ID: 15669501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-structural carbohydrate partitioning in grass stems: a target to increase yield stability, stress tolerance, and biofuel production.
    Slewinski TL
    J Exp Bot; 2012 Aug; 63(13):4647-70. PubMed ID: 22732107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.