These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
76 related articles for article (PubMed ID: 15761515)
41. Conversion from cyclosporine A to azathioprine treatment improves LDL oxidation in kidney transplant recipients. van den Dorpel MA; Ghanem H; Rischen-Vos J; Man in't Veld AJ; Jansen H; Weimar W Kidney Int; 1997 May; 51(5):1608-12. PubMed ID: 9150480 [TBL] [Abstract][Full Text] [Related]
42. Effect of 17 beta-estradiol on plasma lipids and LDL oxidation in postmenopausal women with type II diabetes mellitus. Brussaard HE; Gevers Leuven JA; Kluft C; Krans HM; van Duyvenvoorde W; Buytenhek R; van der Laarse A; Princen HM Arterioscler Thromb Vasc Biol; 1997 Feb; 17(2):324-30. PubMed ID: 9081688 [TBL] [Abstract][Full Text] [Related]
43. Enhanced susceptibility of low-density lipoprotein to oxidation in wet type age-related macular degeneration in male patients. Javadzadeh A; Ghorbanihaghjo A; Rashtchizadeh N; Rafeey M; Rahimi-Ardabili B Saudi Med J; 2007 Feb; 28(2):221-4. PubMed ID: 17268700 [TBL] [Abstract][Full Text] [Related]
44. Dual effect of glucose on LDL oxidation: dependence on vitamin E. Otero P; Herrera E; Bonet B Free Radic Biol Med; 2002 Oct; 33(8):1133-40. PubMed ID: 12374625 [TBL] [Abstract][Full Text] [Related]
45. Impaired antioxidant action of high density lipoprotein in patients with type 1 diabetes with normoalbuminuria and microalbuminuria. Sampaio E; Barbosa DS; Mazzuco TL; Nunes VS; Passarelli M; Nakandakare ER; Carrilho AJ Diabetes Res Clin Pract; 2013 Mar; 99(3):321-6. PubMed ID: 23394721 [TBL] [Abstract][Full Text] [Related]
46. Divergence between LDL oxidative susceptibility and urinary F(2)-isoprostanes as measures of oxidative stress in type 2 diabetes. Devaraj S; Hirany SV; Burk RF; Jialal I Clin Chem; 2001 Nov; 47(11):1974-9. PubMed ID: 11673365 [TBL] [Abstract][Full Text] [Related]
48. The antioxidative effects of the isoflavan glabridin on endogenous constituents of LDL during its oxidation. Belinky PA; Aviram M; Fuhrman B; Rosenblat M; Vaya J Atherosclerosis; 1998 Mar; 137(1):49-61. PubMed ID: 9568736 [TBL] [Abstract][Full Text] [Related]
49. Carotid artery intima-media thickness in children with type 1 diabetes. Järvisalo MJ; Putto-Laurila A; Jartti L; Lehtimäki T; Solakivi T; Rönnemaa T; Raitakari OT Diabetes; 2002 Feb; 51(2):493-8. PubMed ID: 11812760 [TBL] [Abstract][Full Text] [Related]
50. Long-term effect of pioglitazone vs glimepiride on lipoprotein oxidation in patients with type 2 diabetes: a prospective randomized study. Sartore G; Chilelli NC; Seraglia R; Ragazzi E; Marin R; Roverso M; Cosma C; Vaccaro O; Burlina S; Lapolla A Acta Diabetol; 2019 May; 56(5):505-513. PubMed ID: 30740640 [TBL] [Abstract][Full Text] [Related]
51. Metabolism of oxidized glycated low-density lipoprotein in cultured bovine aortic endothelial cells. Kobayashi K; Watanabe J; Umeda F; Masakado M; Ono Y; Taniguchi S; Yanase T; Hashimoto T; Sako Y; Nawata H Horm Metab Res; 1995 Aug; 27(8):356-62. PubMed ID: 7590623 [TBL] [Abstract][Full Text] [Related]
52. Soluble LDL-immune complexes in type 2 diabetes and vascular disease. Turk Z; Sesto M; Skodlar J; Ferencak G; Turk N; Stavljenić-Rukavina A Horm Metab Res; 2002 Apr; 34(4):196-201. PubMed ID: 11987029 [TBL] [Abstract][Full Text] [Related]
53. Low-density-lipoprotein (LDL)-bound flavonoids increase the resistance of LDL to oxidation and glycation under pathophysiological concentrations of glucose in vitro. Wu CH; Lin JA; Hsieh WC; Yen GC J Agric Food Chem; 2009 Jun; 57(11):5058-64. PubMed ID: 19489629 [TBL] [Abstract][Full Text] [Related]
54. Antioxidant supplementation effects on low-density lipoprotein oxidation for individuals with type 2 diabetes mellitus. Anderson JW; Gowri MS; Turner J; Nichols L; Diwadkar VA; Chow CK; Oeltgen PR J Am Coll Nutr; 1999 Oct; 18(5):451-61. PubMed ID: 10511327 [TBL] [Abstract][Full Text] [Related]
55. Tissue factor pathway inhibitor activity associated with LDL is inactivated by cell- and copper-mediated oxidation. Lesnik P; Dentan C; Vonica A; Moreau M; Chapman MJ Arterioscler Thromb Vasc Biol; 1995 Aug; 15(8):1121-30. PubMed ID: 7627705 [TBL] [Abstract][Full Text] [Related]
56. Increased susceptibility to lipid oxidation of low-density lipoproteins and erythrocyte membranes from diabetic patients. Rabini RA; Fumelli P; Galassi R; Dousset N; Taus M; Ferretti G; Mazzanti L; Curatola G; Solera ML; Valdiguié P Metabolism; 1994 Dec; 43(12):1470-4. PubMed ID: 7990698 [TBL] [Abstract][Full Text] [Related]
57. Reduced progression of atherosclerosis in apolipoprotein E-deficient mice following consumption of red wine, or its polyphenols quercetin or catechin, is associated with reduced susceptibility of LDL to oxidation and aggregation. Hayek T; Fuhrman B; Vaya J; Rosenblat M; Belinky P; Coleman R; Elis A; Aviram M Arterioscler Thromb Vasc Biol; 1997 Nov; 17(11):2744-52. PubMed ID: 9409251 [TBL] [Abstract][Full Text] [Related]
58. Homocysteinylation of low-density lipoproteins (LDL) from subjects with Type 1 diabetes: effect on oxidative damage of human endothelial cells. Ferretti G; Bacchetti T; Rabini RA; Vignini A; Nanetti L; Moroni C; Mazzanti L Diabet Med; 2006 Jul; 23(7):808-13. PubMed ID: 16842488 [TBL] [Abstract][Full Text] [Related]
59. Effect of physical exercise on lipoprotein(a) and low-density lipoprotein modifications in type 1 and type 2 diabetic patients. Rigla M; Sánchez-Quesada JL; Ordóñez-Llanos J; Prat T; Caixàs A; Jorba O; Serra JR; de Leiva A; Pérez A Metabolism; 2000 May; 49(5):640-7. PubMed ID: 10831176 [TBL] [Abstract][Full Text] [Related]
60. Studies of LDL particle size and susceptibility to oxidation and association with glucose metabolism in children after heart transplantation. Siirtola A; Antikainen M; Ala-Houhala M; Solakivi T; Jokela H; Lehtimäki T; Holmberg C; Salo MK J Heart Lung Transplant; 2004 Apr; 23(4):418-26. PubMed ID: 15063401 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]