BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 15761613)

  • 1. Mitochondrial K+ transport and cardiac protection during ischemia/reperfusion.
    Carreira RS; Facundo HT; Kowaltowski AJ
    Braz J Med Biol Res; 2005 Mar; 38(3):345-52. PubMed ID: 15761613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial potassium transport: the role of the mitochondrial ATP-sensitive K(+) channel in cardiac function and cardioprotection.
    Garlid KD; Dos Santos P; Xie ZJ; Costa AD; Paucek P
    Biochim Biophys Acta; 2003 Sep; 1606(1-3):1-21. PubMed ID: 14507424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial ATP-sensitive K+ channels are redox-sensitive pathways that control reactive oxygen species production.
    Facundo HT; de Paula JG; Kowaltowski AJ
    Free Radic Biol Med; 2007 Apr; 42(7):1039-48. PubMed ID: 17349931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protection of cardiac mitochondria by diazoxide and protein kinase C: implications for ischemic preconditioning.
    Korge P; Honda HM; Weiss JN
    Proc Natl Acad Sci U S A; 2002 Mar; 99(5):3312-7. PubMed ID: 11867760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Essential role of mitochondrial Ca2+-activated and ATP-sensitive K+ channels in sildenafil-induced late cardioprotection.
    Wang X; Fisher PW; Xi L; Kukreja RC
    J Mol Cell Cardiol; 2008 Jan; 44(1):105-13. PubMed ID: 18021798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Slo(w) path to identifying the mitochondrial channels responsible for ischemic protection.
    Smith CO; Nehrke K; Brookes PS
    Biochem J; 2017 Jun; 474(12):2067-2094. PubMed ID: 28600454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mitochondrial potassium cycle.
    Garlid KD; Paucek P
    IUBMB Life; 2001; 52(3-5):153-8. PubMed ID: 11798027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion.
    Chen Q; Camara AK; Stowe DF; Hoppel CL; Lesnefsky EJ
    Am J Physiol Cell Physiol; 2007 Jan; 292(1):C137-47. PubMed ID: 16971498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The novel H
    Testai L; Marino A; Piano I; Brancaleone V; Tomita K; Di Cesare Mannelli L; Martelli A; Citi V; Breschi MC; Levi R; Gargini C; Bucci M; Cirino G; Ghelardini C; Calderone V
    Pharmacol Res; 2016 Nov; 113(Pt A):290-299. PubMed ID: 27616550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial ATP-sensitive K+ channels prevent oxidative stress, permeability transition and cell death.
    Facundo HT; de Paula JG; Kowaltowski AJ
    J Bioenerg Biomembr; 2005 Apr; 37(2):75-82. PubMed ID: 15906152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Testosterone induces cytoprotection by activating ATP-sensitive K+ channels in the cardiac mitochondrial inner membrane.
    Er F; Michels G; Gassanov N; Rivero F; Hoppe UC
    Circulation; 2004 Nov; 110(19):3100-7. PubMed ID: 15520315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Mechanisms of cardioprotection induced by preconditioning after activation of MITOK(ATP) channel].
    Zhang B; Tang BY; Zhang H; Zhu L; Chen YY; Shen YL
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2007 May; 23(2):190-3. PubMed ID: 21179767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for mitochondrial K+ channels and their role in cardioprotection.
    O'Rourke B
    Circ Res; 2004 Mar; 94(4):420-32. PubMed ID: 15001541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sarcoplasmic ATP-sensitive potassium channel blocker HMR1098 protects the ischemic heart: implication of calcium, complex I, reactive oxygen species and mitochondrial ATP-sensitive potassium channel.
    Pasdois P; Beauvoit B; Costa AD; Vinassa B; Tariosse L; Bonoron-Adèle S; Garlid KD; Dos Santos P
    J Mol Cell Cardiol; 2007 Mar; 42(3):631-42. PubMed ID: 17306295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning?
    Hausenloy DJ; Maddock HL; Baxter GF; Yellon DM
    Cardiovasc Res; 2002 Aug; 55(3):534-43. PubMed ID: 12160950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial ATP-sensitive K+ channel opening decreases reactive oxygen species generation.
    Ferranti R; da Silva MM; Kowaltowski AJ
    FEBS Lett; 2003 Feb; 536(1-3):51-5. PubMed ID: 12586337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial Ca2+-activated K+ channels in cardiac myocytes: a mechanism of the cardioprotective effect and modulation by protein kinase A.
    Sato T; Saito T; Saegusa N; Nakaya H
    Circulation; 2005 Jan; 111(2):198-203. PubMed ID: 15623543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opening mitochondrial K(ATP) in the heart--what happens, and what does not happen.
    Garlid KD
    Basic Res Cardiol; 2000 Aug; 95(4):275-9. PubMed ID: 11005581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial ATP-sensitive potassium channel activation protects cerebellar granule neurons from apoptosis induced by oxidative stress.
    Teshima Y; Akao M; Li RA; Chong TH; Baumgartner WA; Johnston MV; Marbán E
    Stroke; 2003 Jul; 34(7):1796-802. PubMed ID: 12791941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isoflurane activates human cardiac mitochondrial adenosine triphosphate-sensitive K+ channels reconstituted in lipid bilayers.
    Jiang MT; Nakae Y; Ljubkovic M; Kwok WM; Stowe DF; Bosnjak ZJ
    Anesth Analg; 2007 Oct; 105(4):926-32, table of contents. PubMed ID: 17898367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.