These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 15761939)

  • 1. Quantitative Structure-Pharmacokinetic Relationships for drug distribution properties by using general regression neural network.
    Yap CW; Chen YZ
    J Pharm Sci; 2005 Jan; 94(1):153-68. PubMed ID: 15761939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative structure-pharmacokinetic relationships for drug clearance by using statistical learning methods.
    Yap CW; Li ZR; Chen YZ
    J Mol Graph Model; 2006 Mar; 24(5):383-95. PubMed ID: 16290201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of human volume of distribution values for drugs using linear and nonlinear quantitative structure pharmacokinetic relationship models.
    Louis B; Agrawal VK
    Interdiscip Sci; 2014 Mar; 6(1):71-83. PubMed ID: 24464707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ANN-QSAR model of drug-binding to human serum albumin.
    Deeb O; Hemmateenejad B
    Chem Biol Drug Des; 2007 Jul; 70(1):19-29. PubMed ID: 17630991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of steady-state volume of distribution of acidic drugs by quantitative structure-pharmacokinetics relationships.
    Zhivkova Z; Doytchinova I
    J Pharm Sci; 2012 Mar; 101(3):1253-66. PubMed ID: 22170307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-silico prediction of blood-brain barrier permeability.
    Yan A; Liang H; Chong Y; Nie X; Yu C
    SAR QSAR Environ Res; 2013 Jan; 24(1):61-74. PubMed ID: 23092117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of vitreal half-life based on drug physicochemical properties: quantitative structure-pharmacokinetic relationships (QSPKR).
    Durairaj C; Shah JC; Senapati S; Kompella UB
    Pharm Res; 2009 May; 26(5):1236-60. PubMed ID: 18841448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico ADME modelling 2: computational models to predict human serum albumin binding affinity using ant colony systems.
    Gunturi SB; Narayanan R; Khandelwal A
    Bioorg Med Chem; 2006 Jun; 14(12):4118-29. PubMed ID: 16504519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of statistical methods for predicting penetration capacity of drugs into human breast milk using physicochemical, pharmacokinetic and chromatographic descriptors.
    Wanat K; Khakimov B; Brzezińska E
    SAR QSAR Environ Res; 2020 Jun; 31(6):457-475. PubMed ID: 32627677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting blood-brain barrier penetration of drugs using an artificial neural network.
    Fu XC; Wang GP; Liang WQ; Yu QS
    Pharmazie; 2004 Feb; 59(2):126-30. PubMed ID: 15025181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative Structure - Pharmacokinetics Relationships for Plasma Protein Binding of Basic Drugs.
    Zhivkova ZD
    J Pharm Pharm Sci; 2017; 20(1):349-359. PubMed ID: 29145933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gaussian processes: a method for automatic QSAR modeling of ADME properties.
    Obrezanova O; Csanyi G; Gola JM; Segall MD
    J Chem Inf Model; 2007; 47(5):1847-57. PubMed ID: 17602549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multivariate quantitative structure-pharmacokinetic relationships (QSPKR) analysis of adenosine A1 receptor agonists in rat.
    Van der Graaf PH; Nilsson J; Van Schaick EA; Danhof M
    J Pharm Sci; 1999 Mar; 88(3):306-12. PubMed ID: 10052988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of drug-plasma protein binding using human serum albumin chromatographic column and multiple linear regression model.
    Beaudry F; Coutu M; Brown NK
    Biomed Chromatogr; 1999 Oct; 13(6):401-6. PubMed ID: 10477897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative Structure - Pharmacokinetic Relationships for Plasma Clearance of Basic Drugs with Consideration of the Major Elimination Pathway.
    Zhivkova ZD
    J Pharm Pharm Sci; 2017; 20(0):135-147. PubMed ID: 28554345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of drug distribution within blood.
    Paixão P; Gouveia LF; Morais JA
    Eur J Pharm Sci; 2009 Mar; 36(4-5):544-54. PubMed ID: 19152835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative structure-pharmacokinetic relationship modelling: apparent volume of distribution.
    Ghafourian T; Barzegar-Jalali M; Hakimiha N; Cronin MT
    J Pharm Pharmacol; 2004 Mar; 56(3):339-50. PubMed ID: 15025859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds.
    Ventura C; Latino DA; Martins F
    Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reevaluation of a quantitative structure pharmacokinetic model for biliary excretion in rats.
    Gandhi YA; Morris ME
    Drug Metab Dispos; 2012 Jul; 40(7):1259-62. PubMed ID: 22522747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting drug pharmacokinetic properties using molecular interaction fields and SIMCA.
    Wolohan PR; Clark RD
    J Comput Aided Mol Des; 2003 Jan; 17(1):65-76. PubMed ID: 12926856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.