These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 15762156)

  • 1. Nanostructures in diatom frustules: functional morphology of valvocopulae in Cocconeidacean monoraphid taxa.
    De Stefano M; De Stefano L
    J Nanosci Nanotechnol; 2005 Jan; 5(1):15-24. PubMed ID: 15762156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in the optical properties of valve and girdle band in a centric diatom.
    Goessling JW; Su Y; Maibohm C; Ellegaard M; Kühl M
    Interface Focus; 2019 Feb; 9(1):20180031. PubMed ID: 30603064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frustule morphogenesis of raphid pennate diatom Encyonema ventricosum (Agardh) Grunow.
    Bedoshvili YD; Gneusheva KV; Popova MS; Avezova TN; Arsentyev KY; Likhoshway YV
    Protoplasma; 2018 May; 255(3):911-921. PubMed ID: 29270874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of abiotic factors on the nanostructure of diatom frustules-ranges and variability.
    Su Y; Lundholm N; Ellegaard M
    Appl Microbiol Biotechnol; 2018 Jul; 102(14):5889-5899. PubMed ID: 29802480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-based optics of centric diatom frustules: modulation of the in vivo light field for efficient diatom photosynthesis.
    Goessling JW; Su Y; Cartaxana P; Maibohm C; Rickelt LF; Trampe ECL; Walby SL; Wangpraseurt D; Wu X; Ellegaard M; Kühl M
    New Phytol; 2018 Jul; 219(1):122-134. PubMed ID: 29672846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pore architecture of diatom frustules: potential nanostructured membranes for molecular and particle separations.
    Losic D; Rosengarten G; Mitchell JG; Voelcker NH
    J Nanosci Nanotechnol; 2006 Apr; 6(4):982-9. PubMed ID: 16736754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diatom auxospore scales and early stages in diatom frustule morphogenesis: their potential for use in nanotechnology.
    Tiffany MA
    J Nanosci Nanotechnol; 2005 Jan; 5(1):131-9. PubMed ID: 15762171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of silica cell wall morphogenesis in the diatom Cyclotella cryptica: substructure formation and the role of microfilaments.
    Tesson B; Hildebrand M
    J Struct Biol; 2010 Jan; 169(1):62-74. PubMed ID: 19729066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modifying the thickness, pore size, and composition of diatom frustule in Pinnularia sp. with Al
    Soleimani M; Rutten L; Maddala SP; Wu H; Eren ED; Mezari B; Schreur-Piet I; Friedrich H; van Benthem RATM
    Sci Rep; 2020 Nov; 10(1):19498. PubMed ID: 33177559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological diversity and phylogeny of the diatom genus Entomoneis (Bacillariophyta) in marine plankton: six new species from the Adriatic Sea.
    Mejdandžić M; Bosak S; Nakov T; Ruck E; Orlić S; Gligora Udovič M; Peharec Štefanić P; Špoljarić I; Mršić G; Ljubešić Z
    J Phycol; 2018 Apr; 54(2):275-298. PubMed ID: 29419886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of porous silica nanostructures in diatoms isolated from Kurichi and Sulur lakes of Coimbatore, India using field emission scanning electron microscopy.
    N S; R S
    Micron; 2015 Dec; 79():24-8. PubMed ID: 26296232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integrated approach for probing the structure and mechanical properties of diatoms: Toward engineered nanotemplates.
    Moreno MD; Ma K; Schoenung J; Dávila LP
    Acta Biomater; 2015 Oct; 25():313-24. PubMed ID: 26196080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering and medical applications of diatoms.
    Wee KM; Rogers TN; Altan BS; Hackney SA; Hamm C
    J Nanosci Nanotechnol; 2005 Jan; 5(1):88-91. PubMed ID: 15762165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical properties of diatom nanostructured biosilica in Arachnoidiscus sp: micro-optics from mother nature.
    Ferrara MA; Dardano P; De Stefano L; Rea I; Coppola G; Rendina I; Congestri R; Antonucci A; De Stefano M; De Tommasi E
    PLoS One; 2014; 9(7):e103750. PubMed ID: 25076045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CHANGING OF SILICA VALVES OF DIATOM SYNEDRA ACUS subsp. RADIANS INFLUENCED BY PACLITAXEL.
    Bedoshvili YD; Gneusheva KV; Likhoshway YV
    Tsitologiia; 2017; 59(1):53-61. PubMed ID: 30188103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complex gold nanostructures derived by templating from diatom frustules.
    Losic D; Mitchell JG; Voelcker NH
    Chem Commun (Camb); 2005 Oct; (39):4905-7. PubMed ID: 16205794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoluminescence shift in frustules of two pennate diatoms and nanostructural changes to their pores.
    Arteaga-Larios NV; Nahmad Y; Navarro-Contreras HR; Encinas A; Viridiana García-Meza J
    Luminescence; 2014 Dec; 29(8):969-76. PubMed ID: 24585632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological fabrication of photoluminescent nanocomb structures by metabolic incorporation of germanium into the biosilica of the diatom Nitzschia frustulum.
    Qin T; Gutu T; Jiao J; Chang CH; Rorrer GL
    ACS Nano; 2008 Jun; 2(6):1296-304. PubMed ID: 19206348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wavelength and orientation dependent capture of light by diatom frustule nanostructures.
    Romann J; Valmalette JC; Chauton MS; Tranell G; Einarsrud MA; Vadstein O
    Sci Rep; 2015 Dec; 5():17403. PubMed ID: 26627680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New observations on frustule morphology of Eupodiscus radiatus Bailey and Fryxelliella floridana Prasad.
    Fernandes LF
    Braz J Biol; 2003 Aug; 63(3):411-21. PubMed ID: 14758700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.