BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 15762174)

  • 1. Approaches for functional characterization of diatom silicic acid transporters.
    Thamatrakoln K; Hildebrand M
    J Nanosci Nanotechnol; 2005 Jan; 5(1):158-66. PubMed ID: 15762174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for a regulatory role of diatom silicon transporters in cellular silicon responses.
    Shrestha RP; Hildebrand M
    Eukaryot Cell; 2015 Jan; 14(1):29-40. PubMed ID: 25380754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silicification process in diatom algae using different silicon chemical sources: Colloidal silicic acid interactions at cell surface.
    Casabianca S; Penna A; Capellacci S; Cangiotti M; Ottaviani MF
    Colloids Surf B Biointerfaces; 2018 Jan; 161():620-627. PubMed ID: 29156339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct evidence of the molecular basis for biological silicon transport.
    Knight MJ; Senior L; Nancolas B; Ratcliffe S; Curnow P
    Nat Commun; 2016 Jun; 7():11926. PubMed ID: 27305972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Conservative motif CMLD in silicic acid transport proteins of diatom algae].
    Shcherbakova TA; Masiukova IuA; Safonova TA; Petrova DP; Vereshchagin AL; Minaeva TV; Adel'shin RV; Triboĭ TI; Stonik IV; Aĭzdaĭcher NA; Kozlov MV; Likhoshvaĭ EV; Grachev MA
    Mol Biol (Mosk); 2005; 39(2):303-16. PubMed ID: 15856954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression, purification, and reconstitution of a diatom silicon transporter.
    Curnow P; Senior L; Knight MJ; Thamatrakoln K; Hildebrand M; Booth PJ
    Biochemistry; 2012 May; 51(18):3776-85. PubMed ID: 22530967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide transcriptome analyses of silicon metabolism in Phaeodactylum tricornutum reveal the multilevel regulation of silicic acid transporters.
    Sapriel G; Quinet M; Heijde M; Jourdren L; Tanty V; Luo G; Le Crom S; Lopez PJ
    PLoS One; 2009 Oct; 4(10):e7458. PubMed ID: 19829693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silica biomineralization in diatoms: the model organism Thalassiosira pseudonana.
    Sumper M; Brunner E
    Chembiochem; 2008 May; 9(8):1187-94. PubMed ID: 18381716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a silicon transporter gene family in Cylindrotheca fusiformis: sequences, expression analysis, and identification of homologs in other diatoms.
    Hildebrand M; Dahlin K; Volcani BE
    Mol Gen Genet; 1998 Dec; 260(5):480-6. PubMed ID: 9894919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A family of silicon transporter structural genes in a pennate diatom Synedra ulna subsp. danica (Kütz.) Skabitsch.
    Marchenkov AM; Petrova DP; Morozov AA; Zakharova YR; Grachev MA; Bondar AA
    PLoS One; 2018; 13(8):e0203161. PubMed ID: 30157241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The evolution of silicon transporters in diatoms.
    Durkin CA; Koester JA; Bender SJ; Armbrust EV
    J Phycol; 2016 Oct; 52(5):716-731. PubMed ID: 27335204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the sub-cellular dynamics of silicon transportation and synthesis in diatoms using population-level data and computational optimization.
    Javaheri N; Dries R; Kaandorp J
    PLoS Comput Biol; 2014 Jun; 10(6):e1003687. PubMed ID: 24945622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aberration of morphogenesis of siliceous frustule elements of the diatom Synedra acus in the presence of germanic acid.
    Safonova TA; Annenkov VV; Chebykin EP; Danilovtseva EN; Likhoshway YV; Grachev MA
    Biochemistry (Mosc); 2007 Nov; 72(11):1261-9. PubMed ID: 18205610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Elements of the active center of silicic acid transporters in diatoms].
    Grachev MA; Denikina NN; Belikov SI; Likhoshvaĭ EV; Usol'tseva MV; Tikhonova IV; Adel'shin RV; Kler SA; Shcherbakova TA
    Mol Biol (Mosk); 2002; 36(4):679-81. PubMed ID: 12173473
    [No Abstract]   [Full Text] [Related]  

  • 15. Computational modelling of diatom silicic acid transporters predicts a conserved fold with implications for their function and evolution.
    Knight MJ; Hardy BJ; Wheeler GL; Curnow P
    Biochim Biophys Acta Biomembr; 2023 Jan; 1865(1):184056. PubMed ID: 36191629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prospects of manipulating diatom silica nanostructure.
    Hildebrand M
    J Nanosci Nanotechnol; 2005 Jan; 5(1):146-57. PubMed ID: 15762173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A role for diatom-like silicon transporters in calcifying coccolithophores.
    Durak GM; Taylor AR; Walker CE; Probert I; de Vargas C; Audic S; Schroeder D; Brownlee C; Wheeler GL
    Nat Commun; 2016 Feb; 7():10543. PubMed ID: 26842659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of silicon in diatom metabolism. X. Polypeptide labelling patterns during the cell cycle, silicate starvation and recovery in Cylindrotheca fusiformis.
    Okita TW; Volcani BE
    Exp Cell Res; 1980 Feb; 125(2):471-81. PubMed ID: 6243572
    [No Abstract]   [Full Text] [Related]  

  • 19. Polycationic peptides from diatom biosilica that direct silica nanosphere formation.
    Kröger N; Deutzmann R; Sumper M
    Science; 1999 Nov; 286(5442):1129-32. PubMed ID: 10550045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A phase separation model for the nanopatterning of diatom biosilica.
    Sumper M
    Science; 2002 Mar; 295(5564):2430-3. PubMed ID: 11923533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.