BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 15762598)

  • 1. Progressive thermal desorption of vapor mixtures from a preconcentrator with a porous metal foam internal architecture and variable thermal ramp rates.
    Grate JW; Anheier NC; Baldwin DL
    Anal Chem; 2005 Mar; 77(6):1867-75. PubMed ID: 15762598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-walled carbon nanotube paper as a sorbent for organic vapor preconcentration.
    Zheng F; Baldwin DL; Fifield LS; Anheier NC; Aardahl CL; Grate JW
    Anal Chem; 2006 Apr; 78(7):2442-6. PubMed ID: 16579632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of thermal desorption kinetics on vapor injection peak irregularities by a microscale gas chromatography preconcentrator.
    Seo JH; Liu J; Fan X; Kurabayashi K
    Anal Chem; 2012 Aug; 84(15):6336-40. PubMed ID: 22780835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated explosive preconcentrator and electrochemical detection system for 2,4,6-trinitrotoluene (TNT) vapor.
    Cizek K; Prior C; Thammakhet C; Galik M; Linker K; Tsui R; Cagan A; Wake J; La Belle J; Wang J
    Anal Chim Acta; 2010 Feb; 661(1):117-21. PubMed ID: 20113724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of solvent vapors in breath and ambient air with a surface acoustic wave sensor array.
    Groves WA; Zellers ET
    Ann Occup Hyg; 2001 Nov; 45(8):609-23. PubMed ID: 11718657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfabricated passive vapor preconcentrator/injector designed for microscale gas chromatography.
    Seo JH; Kim SK; Zellers ET; Kurabayashi K
    Lab Chip; 2012 Feb; 12(4):717-24. PubMed ID: 22228264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metrics of separation performance in chromatography: Part 2. Separation performance of a heating ramp in temperature-programmed gas chromatography.
    Blumberg LM
    J Chromatogr A; 2012 Jun; 1244():148-60. PubMed ID: 22621891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature and humidity compensation in the determination of solvent vapors with a microsensor system.
    Park J; Zellers ET
    Analyst; 2000 Oct; 125(10):1775-82. PubMed ID: 11070547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-target analysis of vapor mixtures using silicon nanowire array sampling and thermal desorption.
    Johnson K; Giordano B
    J Chromatogr A; 2020 May; 1618():460938. PubMed ID: 32081486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Limits of recognition for binary and ternary vapor mixtures determined with multitransducer arrays.
    Jin C; Zellers ET
    Anal Chem; 2008 Oct; 80(19):7283-93. PubMed ID: 18771277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of spatiotemporal response information from sorption-based sensor arrays to identify and quantify the composition of analyte mixtures.
    Woodka MD; Brunschwig BS; Lewis NS
    Langmuir; 2007 Dec; 23(26):13232-41. PubMed ID: 18001074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast temperature programming on a stainless-steel narrow-bore capillary column by direct resistive heating for fast gas chromatography.
    Xu F; Guan W; Yao G; Guan Y
    J Chromatogr A; 2008 Apr; 1186(1-2):183-8. PubMed ID: 17884064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limits of recognition for simple vapor mixtures determined with a microsensor array.
    Hsieh MD; Zellers ET
    Anal Chem; 2004 Apr; 76(7):1885-95. PubMed ID: 15053648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dual-adsorbent preconcentrator for a portable indoor-VOC microsensor system.
    Lu CJ; Zellers ET
    Anal Chem; 2001 Jul; 73(14):3449-57. PubMed ID: 11476247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Volatile mixture analysis by repetitive injection fast gas chromatography/mass spectrometry.
    White RL
    Anal Chem; 2008 Dec; 80(24):9812-6. PubMed ID: 19007243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple sample transfer technique by internally expanded desorptive flow for needle trap devices.
    Eom IY; Pawliszyn J
    J Sep Sci; 2008 Jul; 31(12):2283-7. PubMed ID: 18563760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low thermal mass liquid chromatography.
    Gu B; Cortes H; Luong J; Pursch M; Eckerle P; Mustacich R
    Anal Chem; 2009 Feb; 81(4):1488-95. PubMed ID: 19140670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and application of a specially designed heating system for temperature-programmed high-performance liquid chromatography using subcritical water as the mobile phase.
    Teutenberg T; Goetze HJ; Tuerk J; Ploeger J; Kiffmeyer TK; Schmidt KG; Kohorst Wg; Rohe T; Jansen HD; Weber H
    J Chromatogr A; 2006 May; 1114(1):89-96. PubMed ID: 16530210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid preconcentrator/focuser module for determinations of explosive marker compounds with a micro-scale gas chromatograph.
    Serrano G; Sukaew T; Zellers ET
    J Chromatogr A; 2013 Mar; 1279():76-85. PubMed ID: 23357747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RF tumour ablation: computer simulation and mathematical modelling of the effects of electrical and thermal conductivity.
    Lobo SM; Liu ZJ; Yu NC; Humphries S; Ahmed M; Cosman ER; Lenkinski RE; Goldberg W; Goldberg SN
    Int J Hyperthermia; 2005 May; 21(3):199-213. PubMed ID: 16019848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.