BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 15762622)

  • 1. Acceleration of enzymatic reaction of trypsin through the formation of water-soluble complexes with poly(ethylene glycol)-block-poly(alpha,beta-aspartic acid).
    Kawamura A; Yoshioka Y; Harada A; Kono K
    Biomacromolecules; 2005; 6(2):627-31. PubMed ID: 15762622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of polycarboxylate blocks on the amidase activity of trypsin through complexation with PEG/polycarboxylate block ionomers.
    Harada A; Yoshioka Y; Kawamura A; Kojima C; Kono K
    Macromol Biosci; 2007 Mar; 7(3):339-43. PubMed ID: 17370272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noncovalent complexes between poly(ethylene glycol) and proteins.
    Topchieva IN; Sorokina EM; Efremova NV; Ksenofontov AL
    Biochemistry (Mosc); 1998 Nov; 63(11):1312-8. PubMed ID: 9864473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of a novel multifunctional excipient poly(ethylene glycol)-block-oligo(vinyl sulfadimethoxine) in controlled release of lysozyme from PLGA microspheres.
    Taluja A; Bae YH
    Int J Pharm; 2008 Jun; 358(1-2):50-9. PubMed ID: 18395374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembled nano-bioreactor from block ionomers with elevated and stabilized enzymatic function.
    Kawamura A; Harada A; Kono K; Kataoka K
    Bioconjug Chem; 2007; 18(5):1555-9. PubMed ID: 17696317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-induced micelle formation of poly(histidine-co-phenylalanine)-block-poly(ethylene glycol) in aqueous media.
    Kim GM; Bae YH; Jo WH
    Macromol Biosci; 2005 Nov; 5(11):1118-24. PubMed ID: 16245269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilization of lysozyme-incorporated polyion complex micelles by the omega-end derivatization of poly(ethylene glycol)-poly(alpha,beta-aspartic acid) block copolymers with hydrophobic groups.
    Yuan X; Harada A; Yamasaki Y; Kataoka K
    Langmuir; 2005 Mar; 21(7):2668-74. PubMed ID: 15779933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyelectrolyte nanoparticles based on water-soluble chitosan-poly(L-aspartic acid)-polyethylene glycol for controlled protein release.
    Shu S; Zhang X; Teng D; Wang Z; Li C
    Carbohydr Res; 2009 Jul; 344(10):1197-204. PubMed ID: 19508912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron hydroxide nanoparticles coated with poly(ethylene glycol)-poly(aspartic acid) block copolymer as novel magnetic resonance contrast agents for in vivo cancer imaging.
    Kumagai M; Imai Y; Nakamura T; Yamasaki Y; Sekino M; Ueno S; Hanaoka K; Kikuchi K; Nagano T; Kaneko E; Shimokado K; Kataoka K
    Colloids Surf B Biointerfaces; 2007 Apr; 56(1-2):174-81. PubMed ID: 17324561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic hydrolysis of alpha- and beta-oligo(L-aspartic acid)s by poly(aspartic acid) hydrolases-1 and 2 from Sphingomonas sp. KT-1.
    Hiraishi T; Kajiyama M; Yamato I; Doi Y
    Macromol Biosci; 2004 Mar; 4(3):330-9. PubMed ID: 15468224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic synthesis of poly(α-ethyl β-aspartate) by poly(ethylene glycol) modified poly(aspartate) hydrolase-1.
    Hiraishi T; Masuda E; Miyamoto D; Kanayama N; Abe H; Maeda M
    Macromol Biosci; 2011 Feb; 11(2):187-91. PubMed ID: 20954200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased activity and stability of poly(ethylene glycol)-modified trypsin.
    Gaertner HF; Puigserver AJ
    Enzyme Microb Technol; 1992 Feb; 14(2):150-5. PubMed ID: 1368397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability of bovine serum albumin complexed with PEG-poly(L-histidine) diblock copolymer in PLGA microspheres.
    Kim JH; Taluja A; Knutson K; Han Bae Y
    J Control Release; 2005 Dec; 109(1-3):86-100. PubMed ID: 16266769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers.
    Bae Y; Kataoka K
    Adv Drug Deliv Rev; 2009 Aug; 61(10):768-84. PubMed ID: 19422866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(ethylene glycol) micro-patterns as environmentally sensitive template for selective or non-selective adsorption.
    Wang B; He T; Liu L; Gao C
    Colloids Surf B Biointerfaces; 2005 Dec; 46(3):169-74. PubMed ID: 16326082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of characterization of poly(ethylene glycol) vinyl sulfone.
    Morpurgo M; Veronese FM; Kachensky D; Harris JM
    Bioconjug Chem; 1996; 7(3):363-8. PubMed ID: 8816961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable interpolyelectrolyte complexes based on methoxy poly(ethylene glycol)-b-poly(alpha,L-glutamic acid) and chitosan.
    Luo K; Yin J; Song Z; Cui L; Cao B; Chen X
    Biomacromolecules; 2008 Oct; 9(10):2653-61. PubMed ID: 18754685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-situ formation of biodegradable hydrogels by stereocomplexation of PEG-(PLLA)8 and PEG-(PDLA)8 star block copolymers.
    Hiemstra C; Zhong Z; Li L; Dijkstra PJ; Feijen J
    Biomacromolecules; 2006 Oct; 7(10):2790-5. PubMed ID: 17025354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of PEG molecular weight and linking chemistry on the biological activity and thermal stability of PEGylated trypsin.
    Treetharnmathurot B; Ovartlarnporn C; Wungsintaweekul J; Duncan R; Wiwattanapatapee R
    Int J Pharm; 2008 Jun; 357(1-2):252-9. PubMed ID: 18308489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved complementary polymer pair system: switching for enzyme activity by PEGylated polymers.
    Kurinomaru T; Tomita S; Kudo S; Ganguli S; Nagasaki Y; Shiraki K
    Langmuir; 2012 Mar; 28(9):4334-8. PubMed ID: 22320263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.