These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 15762629)

  • 1. Identifying the characteristic secondary ions of lignin polymer using ToF-SIMS.
    Saito K; Kato T; Tsuji Y; Fukushima K
    Biomacromolecules; 2005; 6(2):678-83. PubMed ID: 15762629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new analysis of the depolymerized fragments of lignin polymer using ToF-SIMS.
    Saito K; Kato T; Takamori H; Kishimoto T; Fukushima K
    Biomacromolecules; 2005; 6(5):2688-96. PubMed ID: 16153107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct mapping of morphological distribution of syringyl and guaiacyl lignin in the xylem of maple by time-of-flight secondary ion mass spectrometry.
    Saito K; Watanabe Y; Shirakawa M; Matsushita Y; Imai T; Koike T; Sano Y; Funada R; Fukazawa K; Fukushima K
    Plant J; 2012 Feb; 69(3):542-52. PubMed ID: 21978273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical and spatial differentiation of syringyl and guaiacyl lignins in poplar wood via time-of-flight secondary ion mass spectrometry.
    Zhou C; Li Q; Chiang VL; Lucia LA; Griffis DP
    Anal Chem; 2011 Sep; 83(18):7020-6. PubMed ID: 21851065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expanding the library of secondary ions that distinguish lignin and polysaccharides in time-of-flight secondary ion mass spectrometry analysis of wood.
    Goacher RE; Jeremic D; Master ER
    Anal Chem; 2011 Feb; 83(3):804-12. PubMed ID: 21190327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discriminating and imaging different phosphatidylcholine species within phase-separated model membranes by principal component analysis of TOF-secondary ion mass spectrometry images.
    Vaezian B; Anderton CR; Kraft ML
    Anal Chem; 2010 Dec; 82(24):10006-14. PubMed ID: 21082775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular depth profiling of multilayer polymer films using time-of-flight secondary ion mass spectrometry.
    Wagner MS
    Anal Chem; 2005 Feb; 77(3):911-22. PubMed ID: 15679361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TOF-SIMS 3D biomolecular imaging of Xenopus laevis oocytes using buckminsterfullerene (C60) primary ions.
    Fletcher JS; Lockyer NP; Vaidyanathan S; Vickerman JC
    Anal Chem; 2007 Mar; 79(6):2199-206. PubMed ID: 17302385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A signature-based method to distinguish time-of-flight secondary-ion mass spectra from biological samples.
    Quong JN; Quong AA; Wu KJ; Kercher JR
    Chem Biodivers; 2005 Nov; 2(11):1495-502. PubMed ID: 17191949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The behavior of deuterium-labeled monolignol and monolignol glucosides in lignin biosynthesis in angiosperms.
    Tsuji Y; Chen F; Yasuda S; Fukushima K
    J Agric Food Chem; 2004 Jan; 52(1):131-4. PubMed ID: 14709025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of opioid and amyloid peptides using time-of-flight secondary ion mass spectrometry.
    Solé-Domènech S; Johansson B; Schalling M; Malm J; Sjövall P
    Anal Chem; 2010 Mar; 82(5):1964-74. PubMed ID: 20121067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of bone minerals by time-of-flight secondary ion mass spectrometry: a comparative study using monoatomic and cluster ions sources.
    Malmberg P; Bexell U; Eriksson C; Nygren H; Richter K
    Rapid Commun Mass Spectrom; 2007; 21(5):745-9. PubMed ID: 17279603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vacuum-ultraviolet photoionization and mass spectrometric characterization of lignin monomers coniferyl and sinapyl alcohols.
    Takahashi LK; Zhou J; Kostko O; Golan A; Leone SR; Ahmed M
    J Phys Chem A; 2011 Apr; 115(15):3279-90. PubMed ID: 21410275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal nanoparticle deposition for TOF-SIMS signal enhancement of polymers.
    Marcus A; Winograd N
    Anal Chem; 2006 Jan; 78(1):141-8. PubMed ID: 16383321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TOF-SIMS analysis of structured surfaces biofunctionalized by a one-step coupling of a spacer-linked GRGDS peptide.
    Petershans A; Lyapin A; Reichlmaier S; Kalinina S; Wedlich D; Gliemann H
    J Colloid Interface Sci; 2010 Jan; 341(1):30-7. PubMed ID: 19836024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural analysis of secondary ions by post-source decay in time-of-flight secondary ion mass spectrometry.
    Touboul D; Brunelle A; Laprévote O
    Rapid Commun Mass Spectrom; 2006; 20(4):703-9. PubMed ID: 16447144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioimaging TOF-SIMS of tissues by gold ion bombardment of a silver-coated thin section.
    Nygren H; Johansson BR; Malmberg P
    Microsc Res Tech; 2004 Dec; 65(6):282-6. PubMed ID: 15662659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural effects in the analysis of supported lipid bilayers by time-of-flight secondary ion mass spectrometry.
    Prinz C; Höök F; Malm J; Sjövall P
    Langmuir; 2007 Jul; 23(15):8035-41. PubMed ID: 17569548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface study of collagen/poloxamine hydrogels by a 'deep freezing' ToF-SIMS approach.
    Sosnik A; Sodhi RN; Brodersen PM; Sefton MV
    Biomaterials; 2006 Apr; 27(11):2340-8. PubMed ID: 16332388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of syringyl to guaiacyl ratio on the structure of natural and synthetic lignins.
    Kishimoto T; Chiba W; Saito K; Fukushima K; Uraki Y; Ubukata M
    J Agric Food Chem; 2010 Jan; 58(2):895-901. PubMed ID: 20041658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.