These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Oh SH; Park IK; Kim JM; Lee JH Biomaterials; 2007 Mar; 28(9):1664-71. PubMed ID: 17196648 [TBL] [Abstract][Full Text] [Related]
9. A comparative analysis of scaffold material modifications for load-bearing applications in bone tissue engineering. Chim H; Hutmacher DW; Chou AM; Oliveira AL; Reis RL; Lim TC; Schantz JT Int J Oral Maxillofac Surg; 2006 Oct; 35(10):928-34. PubMed ID: 16762529 [TBL] [Abstract][Full Text] [Related]
10. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering. Wang J; Yu X Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749 [TBL] [Abstract][Full Text] [Related]
11. Selective laser sintering of biocompatible polymers for applications in tissue engineering. Tan KH; Chua CK; Leong KF; Cheah CM; Gui WS; Tan WS; Wiria FE Biomed Mater Eng; 2005; 15(1-2):113-24. PubMed ID: 15623935 [TBL] [Abstract][Full Text] [Related]
12. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. Lin CY; Kikuchi N; Hollister SJ J Biomech; 2004 May; 37(5):623-36. PubMed ID: 15046991 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Shor L; Güçeri S; Wen X; Gandhi M; Sun W Biomaterials; 2007 Dec; 28(35):5291-7. PubMed ID: 17884162 [TBL] [Abstract][Full Text] [Related]
14. Polycaprolactone/hydroxyapatite composite scaffolds: preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells. Chuenjitkuntaworn B; Inrung W; Damrongsri D; Mekaapiruk K; Supaphol P; Pavasant P J Biomed Mater Res A; 2010 Jul; 94(1):241-51. PubMed ID: 20166220 [TBL] [Abstract][Full Text] [Related]
15. Solid freeform fabrication and in-vitro response of osteoblast cells of mPEG-PCL-mPEG bone scaffolds. Jiang CP; Chen YY; Hsieh MF; Lee HM Biomed Microdevices; 2013 Apr; 15(2):369-79. PubMed ID: 23324877 [TBL] [Abstract][Full Text] [Related]
16. The mechanical integrity of in vivo engineered heterotopic bone. Warnke PH; Springer IN; Acil Y; Julga G; Wiltfang J; Ludwig K; Russo PA; Sherry E; Sivananthan S; Hedderich J; Terheyden H Biomaterials; 2006 Mar; 27(7):1081-7. PubMed ID: 16120459 [TBL] [Abstract][Full Text] [Related]
17. Integrating novel technologies to fabricate smart scaffolds. Moroni L; de Wijn JR; van Blitterswijk CA J Biomater Sci Polym Ed; 2008; 19(5):543-72. PubMed ID: 18419938 [TBL] [Abstract][Full Text] [Related]
18. Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells. Kim HJ; Kim UJ; Vunjak-Novakovic G; Min BH; Kaplan DL Biomaterials; 2005 Jul; 26(21):4442-52. PubMed ID: 15701373 [TBL] [Abstract][Full Text] [Related]
19. Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration. Park SH; Kim TG; Kim HC; Yang DY; Park TG Acta Biomater; 2008 Sep; 4(5):1198-207. PubMed ID: 18458008 [TBL] [Abstract][Full Text] [Related]
20. Surface modification of polycaprolactone scaffolds fabricated via selective laser sintering for cartilage tissue engineering. Chen CH; Lee MY; Shyu VB; Chen YC; Chen CT; Chen JP Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():389-97. PubMed ID: 24857507 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]