BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 15763269)

  • 1. Biomaterial microarrays: rapid, microscale screening of polymer-cell interaction.
    Anderson DG; Putnam D; Lavik EB; Mahmood TA; Langer R
    Biomaterials; 2005 Aug; 26(23):4892-7. PubMed ID: 15763269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells.
    Anderson DG; Levenberg S; Langer R
    Nat Biotechnol; 2004 Jul; 22(7):863-6. PubMed ID: 15195101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proliferation and osteogenic differentiation of mesenchymal stem cells cultured onto three different polymers in vitro.
    Jäger M; Feser T; Denck H; Krauspe R
    Ann Biomed Eng; 2005 Oct; 33(10):1319-32. PubMed ID: 16240081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cooperative polymer-DNA microarray approach to biomaterial investigation.
    Pernagallo S; Diaz-Mochon JJ; Bradley M
    Lab Chip; 2009 Feb; 9(3):397-403. PubMed ID: 19156288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microfabricated platform for high-throughput unconfined compression of micropatterned biomaterial arrays.
    Moraes C; Wang G; Sun Y; Simmons CA
    Biomaterials; 2010 Jan; 31(3):577-84. PubMed ID: 19819010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behaviour of human mesenchymal stem cells on a polyelectrolyte-modified HEMA hydrogel for silk-based ligament tissue engineering.
    Bosetti M; Boccafoschi F; Calarco A; Leigheb M; Gatti S; Piffanelli V; Peluso G; Cannas M
    J Biomater Sci Polym Ed; 2008; 19(9):1111-23. PubMed ID: 18727855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells.
    Wang Y; Kim UJ; Blasioli DJ; Kim HJ; Kaplan DL
    Biomaterials; 2005 Dec; 26(34):7082-94. PubMed ID: 15985292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TiO2 nanotube surfaces: 15 nm--an optimal length scale of surface topography for cell adhesion and differentiation.
    Park J; Bauer S; Schlegel KA; Neukam FW; von der Mark K; Schmuki P
    Small; 2009 Mar; 5(6):666-71. PubMed ID: 19235196
    [No Abstract]   [Full Text] [Related]  

  • 9. Controlling the phenotype and function of mesenchymal stem cells in vitro by adhesion to silane-modified clean glass surfaces.
    Curran JM; Chen R; Hunt JA
    Biomaterials; 2005 Dec; 26(34):7057-67. PubMed ID: 16023712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds.
    Mygind T; Stiehler M; Baatrup A; Li H; Zou X; Flyvbjerg A; Kassem M; Bünger C
    Biomaterials; 2007 Feb; 28(6):1036-47. PubMed ID: 17081601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput screening of cell responses to biomaterials.
    Yliperttula M; Chung BG; Navaladi A; Manbachi A; Urtti A
    Eur J Pharm Sci; 2008 Oct; 35(3):151-60. PubMed ID: 18586092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combinatorial protein display for the cell-based screening of biomaterials that direct neural stem cell differentiation.
    Nakajima M; Ishimuro T; Kato K; Ko IK; Hirata I; Arima Y; Iwata H
    Biomaterials; 2007 Feb; 28(6):1048-60. PubMed ID: 17081602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyelectrolyte multilayer films: effect of the initial anchoring layer on the cell growth.
    Moby V; Kadi A; de Isla N; Stoltz JF; Menu P
    Biomed Mater Eng; 2008; 18(4-5):199-204. PubMed ID: 19065022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-mulberry silk gland fibroin protein 3-D scaffold for enhanced differentiation of human mesenchymal stem cells into osteocytes.
    Mandal BB; Kundu SC
    Acta Biomater; 2009 Sep; 5(7):2579-90. PubMed ID: 19345621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of stem cell/biomaterial combinations for stem cell-based tissue engineering.
    Neuss S; Apel C; Buttler P; Denecke B; Dhanasingh A; Ding X; Grafahrend D; Groger A; Hemmrich K; Herr A; Jahnen-Dechent W; Mastitskaya S; Perez-Bouza A; Rosewick S; Salber J; Wöltje M; Zenke M
    Biomaterials; 2008 Jan; 29(3):302-13. PubMed ID: 17935776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular and molecular events during chondrogenesis of human mesenchymal stromal cells grown in a three-dimensional hyaluronan based scaffold.
    Lisignoli G; Cristino S; Piacentini A; Toneguzzi S; Grassi F; Cavallo C; Zini N; Solimando L; Mario Maraldi N; Facchini A
    Biomaterials; 2005 Oct; 26(28):5677-86. PubMed ID: 15878373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical interaction of polyphosphoric acid with titanium and its effect on human bone marrow derived mesenchymal stem cell behavior.
    Maekawa K; Yoshida Y; Mine A; Fujisawa T; Van Meerbeek B; Suzuki K; Kuboki T
    J Biomed Mater Res A; 2007 Jul; 82(1):195-200. PubMed ID: 17266020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer microarrays for cellular high-content screening.
    Pernagallo S; Diaz-Mochon JJ
    Methods Mol Biol; 2011; 706():171-80. PubMed ID: 21104063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cardiomyogenic differentiation of rat mesenchymal stem cells on silk fibroin-polysaccharide cardiac patches in vitro.
    Yang MC; Wang SS; Chou NK; Chi NH; Huang YY; Chang YL; Shieh MJ; Chung TW
    Biomaterials; 2009 Aug; 30(22):3757-65. PubMed ID: 19410289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical and molecular characterization of hepatocyte-like cells derived from human bone marrow mesenchymal stem cells on a novel three-dimensional biocompatible nanofibrous scaffold.
    Kazemnejad S; Allameh A; Soleimani M; Gharehbaghian A; Mohammadi Y; Amirizadeh N; Jazayery M
    J Gastroenterol Hepatol; 2009 Feb; 24(2):278-87. PubMed ID: 18752558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.