BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 15763505)

  • 1. A novel alkali-tolerant Yarrowia lipolytica strain for dissecting Na+-coupled phosphate transport systems in yeasts.
    Zvyagilskaya R; Persson BL
    Cell Biol Int; 2005 Jan; 29(1):87-94. PubMed ID: 15763505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual regulation of proton- and sodium-coupled phosphate transport systems in the Yarrowia lipolytica yeast by extracellular phosphate and pH.
    Zvyagilskaya R; Persson BL
    IUBMB Life; 2003 Mar; 55(3):151-4. PubMed ID: 12822892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphate-uptake systems in Yarrowia lipolytica cells grown under alkaline conditions.
    Zvyagilskaya R; Parchomenko O; Persson BL
    IUBMB Life; 2000 Aug; 50(2):151-5. PubMed ID: 11185962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton- and sodium-coupled phosphate transport systems and energy status of Yarrowia lipolytica cells grown in acidic and alkaline conditions.
    Zvyagilskaya R; Parchomenko O; Abramova N; Allard P; Panaretakis T; Pattison-Granberg J; Persson BL
    J Membr Biol; 2001 Sep; 183(1):39-50. PubMed ID: 11547351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new Alkalitolerant Yarrowia lipolytica yeast strain is a promising model for dissecting properties and regulation of Na+ -dependent phosphate transport systems.
    Zvyagilskaya RA; Persson BL
    Biochemistry (Mosc); 2004 Nov; 69(11):1310-7. PubMed ID: 15627385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the Pho89 phosphate transporter by functional hyperexpression in Saccharomyces cerevisiae.
    Zvyagilskaya RA; Lundh F; Samyn D; Pattison-Granberg J; Mouillon JM; Popova Y; Thevelein JM; Persson BL
    FEMS Yeast Res; 2008 Aug; 8(5):685-96. PubMed ID: 18625026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two systems for phosphate uptake in Yarrowia lipolytica cells grown at acidic conditions.
    Zvyagilskaya R; Allard P; Persson BL
    IUBMB Life; 2000 Feb; 49(2):143-7. PubMed ID: 10776598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of a novel leaf-inhabiting osmo-, salt-, and alkali-tolerant Yarrowia lipolytica yeast strain.
    Zvyagilskaya R; Andreishcheva E; Soares MI; Khozin I; Berhe A; Persson BL
    J Basic Microbiol; 2001; 41(5):289-303. PubMed ID: 11688215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ontogeny of phosphate transport by rat liver plasma membrane vesicles.
    Ghishan FK; Dykes W
    J Dev Physiol; 1993 May; 19(5):197-201. PubMed ID: 8083496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of pH on the low and high affinity Na+-phosphate co-transport system in rat renal cortex.
    Bindels RJ; van den Broek LA; van Os CH
    Prog Clin Biol Res; 1988; 252():359-64. PubMed ID: 3347626
    [No Abstract]   [Full Text] [Related]  

  • 11. [Adaptation of the yeast Yarrowia lipolytica to heat shock].
    Biriukova EN; Medentsev AG; Arinbasarova AIu; Akimenko VK
    Mikrobiologiia; 2007; 76(2):184-90. PubMed ID: 17583214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yarrowia lipolytica possesses two plasma membrane alkali metal cation/H+ antiporters with different functions in cell physiology.
    Papouskova K; Sychrova H
    FEBS Lett; 2006 Apr; 580(8):1971-6. PubMed ID: 16529746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological evidence for a sodium-dependent high-affinity phosphate and nitrate transport at the plasma membrane of leaf and root cells of Zostera marina L.
    Rubio L; Linares-Rueda A; García-Sánchez MJ; Fernández JA
    J Exp Bot; 2005 Feb; 56(412):613-22. PubMed ID: 15611145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptation to salt stress in a salt-tolerant strain of the yeast Yarrowia lipolytica.
    Andreishcheva EN; Isakova EP; Sidorov NN; Abramova NB; Ushakova NA; Shaposhnikov GL; Soares MI; Zvyagilskaya RA
    Biochemistry (Mosc); 1999 Sep; 64(9):1061-7. PubMed ID: 10521723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aluminum impairs morphogenic transition and stimulates H(+) transport mediated by the plasma membrane ATPase of Yarrowia lipolytica.
    Lobão FA; Façanha AR; Okorokov LA; Dutra KR; Okorokova-Façanha AL
    FEMS Microbiol Lett; 2007 Sep; 274(1):17-23. PubMed ID: 17663703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphate uptake in Chlorella pyrenoidosa : II. Effect of pH and of SH reagents.
    Jeanjean R
    Biochimie; 1975; 57(10):1229-36. PubMed ID: 4152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptation to phosphate deprivation in osteoblast-like cells.
    Ha R; Steenbergen DK; Kempson SA
    Cell Biochem Funct; 1993 Jun; 11(2):119-24. PubMed ID: 8324880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New finding and optimal production of a novel extracellular alkaline lipase from Yarrowia lipolytica NRRL Y-2178.
    Lee GH; Bae JH; Suh MJ; Kim IH; Hou CT; Kim HR
    J Microbiol Biotechnol; 2007 Jun; 17(6):1054-7. PubMed ID: 18050928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: a review.
    Madzak C; Gaillardin C; Beckerich JM
    J Biotechnol; 2004 Apr; 109(1-2):63-81. PubMed ID: 15063615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 40-kDa polypeptide from papain digestion of the rabbit intestinal Na+/phosphate cotransporter retains Na+ and phosphate cotransport.
    Peerce BE
    Arch Biochem Biophys; 2002 May; 401(1):1-10. PubMed ID: 12054481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.