BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 15763635)

  • 1. Ketamine reduces cholinergic modulated GABA release from rat striatal slices.
    Grasshoff C; Gillessen T; Wagner E; Thiermann H; Szinicz L
    Toxicol Lett; 2005 Apr; 156(3):361-7. PubMed ID: 15763635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Ketamine inhibits n-methyl-d-aspartate (NMDA) receptor mediated acetylcholine release from rabbit caudate nucleus slices].
    Feuerstein TJ
    Anaesthesist; 1994 Nov; 43 Suppl 2():S48-51. PubMed ID: 7840414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the mechanism for the relaxation of rat duodenum mediated via M1 muscarinic receptors.
    Hamrouni AM; Gudka N; Broadley KJ
    Auton Autacoid Pharmacol; 2006 Jul; 26(3):275-84. PubMed ID: 16879493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lack of localization of 5-HT6 receptors on cholinergic neurons: implication of multiple neurotransmitter systems in 5-HT6 receptor-mediated acetylcholine release.
    Marcos B; Gil-Bea FJ; Hirst WD; García-Alloza M; Ramírez MJ
    Eur J Neurosci; 2006 Sep; 24(5):1299-306. PubMed ID: 16987217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of NMDA and GABAA receptors in the inhibiting effect of 3 MPa nitrogen on striatal dopamine level.
    Lavoute C; Weiss M; Rostain JC
    Brain Res; 2007 Oct; 1176():37-44. PubMed ID: 17900538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ketamine induces hyperactivity in rats and hypersensitivity to nicotine in rat striatal slices.
    Rodvelt KR; Kracke GR; Schachtman TR; Miller DK
    Pharmacol Biochem Behav; 2008 Nov; 91(1):71-6. PubMed ID: 18639577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of MK-801 on dopamine release evoked by hypoxia combined with hypoglycemia.
    Milusheva E
    Acta Physiol Hung; 1992; 79(4):347-54. PubMed ID: 1343187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Failure of MK-801 to suppress D1 receptor-mediated induction of locomotor activity and striatal preprotachykinin mRNA expression in the dopamine-depleted rat.
    Campbell BM; Kreipke CW; Walker PD
    Neuroscience; 2006; 137(2):505-17. PubMed ID: 16289829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NR2A and NR2B subunit containing NMDA receptors differentially regulate striatal output pathways.
    Fantin M; Marti M; Auberson YP; Morari M
    J Neurochem; 2007 Dec; 103(6):2200-11. PubMed ID: 17986236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMDA antagonist effects on striatal dopamine release: microdialysis studies in awake monkeys.
    Adams BW; Bradberry CW; Moghaddam B
    Synapse; 2002 Jan; 43(1):12-8. PubMed ID: 11746729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endogenous GABA release from rat striatal slices: effects of the GABAB receptor antagonist 2-hydroxy-saclofen.
    Mayfield RD; Zahniser NR
    Synapse; 1993 May; 14(1):16-23. PubMed ID: 8390105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential effects of the neuropeptide galanin on striatal acetylcholine release in anaesthetized and awake rats.
    Antoniou K; Kehr J; Snitt K; Ogren SO
    Br J Pharmacol; 1997 Jul; 121(6):1180-6. PubMed ID: 9249255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3-Nitropropionic acid exacerbates [3H]GABA release evoked by glucose deprivation in rat striatal slices.
    Boireau A; Meunier M; Doble A
    J Pharm Pharmacol; 1996 Jan; 48(1):85-9. PubMed ID: 8722502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-methyl d-aspartate receptor antagonists ketamine and MK-801 induce wake-related aberrant gamma oscillations in the rat neocortex.
    Pinault D
    Biol Psychiatry; 2008 Apr; 63(8):730-5. PubMed ID: 18022604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AMPA and NMDA receptor regulation of firing activity in 5-HT neurons of the dorsal and median raphe nuclei.
    Gartside SE; Cole AJ; Williams AP; McQuade R; Judge SJ
    Eur J Neurosci; 2007 May; 25(10):3001-8. PubMed ID: 17509083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between M1-muscarinic and glutamatergic NMDA receptors on an inhibitory avoidance task.
    Monteiro Moreira K; Lima Ferreira T; Vecchio Fornari R; Perez Figueredo LZ; Menezes Oliveira MG
    Brain Res Bull; 2005 Nov; 67(6):504-8. PubMed ID: 16216700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dopamine D2 receptor-mediated G protein activation assessed by agonist-stimulated [35S]guanosine 5'-O-(gamma-thiotriphosphate) binding in rat striatal membranes.
    Odagaki Y; Toyoshima R
    Prog Neuropsychopharmacol Biol Psychiatry; 2006 Sep; 30(7):1304-12. PubMed ID: 16824659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMDA receptor blockade augmented nicotine-evoked dopamine release from rat prefrontal cortex slices.
    Rodvelt KR; Schachtman TR; Kracke GR; Miller DK
    Neurosci Lett; 2008 Aug; 440(3):319-22. PubMed ID: 18579301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscarinic modulation of striatal dopamine, glutamate, and GABA release, as measured with in vivo microdialysis.
    Smolders I; Bogaert L; Ebinger G; Michotte Y
    J Neurochem; 1997 May; 68(5):1942-8. PubMed ID: 9109520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The selective m1 muscarinic antagonist MT-7 blocks pilocarpine-induced striatal Fos expression.
    Wirtshafter D
    Brain Res; 2006 Apr; 1085(1):127-31. PubMed ID: 16564505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.