BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 15763955)

  • 21. Antioxidant paradoxes of phenolic compounds: peroxyl radical scavenger and lipid antioxidant, etoposide (VP-16), inhibits sarcoplasmic reticulum Ca(2+)-ATPase via thiol oxidation by its phenoxyl radical.
    Ritov VB; Goldman R; Stoyanovsky DA; Menshikova EV; Kagan VE
    Arch Biochem Biophys; 1995 Aug; 321(1):140-52. PubMed ID: 7639514
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of liposomes to evaluate the role of membrane interactions on antioxidant activity.
    Reis S; Lúcio M; Segundo M; Lima JL
    Methods Mol Biol; 2010; 606():167-88. PubMed ID: 20013397
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of flavonoid--biomembrane interactions.
    Ollila F; Halling K; Vuorela P; Vuorela H; Slotte JP
    Arch Biochem Biophys; 2002 Mar; 399(1):103-8. PubMed ID: 11883909
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of liposomes to evaluate the role of membrane interactions on antioxidant activity.
    Lúcio M; Ferreira H; Lima JL; Reis S
    Anal Chim Acta; 2007 Jul; 597(1):163-70. PubMed ID: 17658327
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Amphotericin B as an intracellular antioxidant: protection against 2,2'-azobis(2,4-dimethylvaleronitrile)-induced peroxidation of membrane phospholipids in rat aortic smooth muscle cells.
    Osaka K; Tyurina YY; Dubey RK; Tyurin VA; Ritov VB; Quinn PJ; Branch RA; Kagan VE
    Biochem Pharmacol; 1997 Oct; 54(8):937-45. PubMed ID: 9354594
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetics of the lipoperoxyl radical-scavenging activity of indicaxanthin in solution and unilamellar liposomes.
    Tesoriere L; Allegra M; Butera D; Gentile C; Livrea MA
    Free Radic Res; 2007 Feb; 41(2):226-33. PubMed ID: 17364949
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction of flavonoids with red blood cell membrane lipids and proteins: antioxidant and antihemolytic effects.
    Chaudhuri S; Banerjee A; Basu K; Sengupta B; Sengupta PK
    Int J Biol Macromol; 2007 Jun; 41(1):42-8. PubMed ID: 17239435
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxidation of liposomal membrane suppressed by flavonoids: quantitative structure-activity relationship.
    Rackova L; Firakova S; Kostalova D; Stefek M; Sturdik E; Majekova M
    Bioorg Med Chem; 2005 Dec; 13(23):6477-84. PubMed ID: 16182538
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 5-Aminosalicylic acid protection against oxidative damage to synaptosomal membranes by alkoxyl radicals in vitro.
    Kanski J; Lauderback C; Butterfield DA
    Neurochem Res; 2001 Jan; 26(1):23-9. PubMed ID: 11358278
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The anti-oxidant properties of 5-aminosalicylic acid.
    Pearson DC; Jourd'heuil D; Meddings JB
    Free Radic Biol Med; 1996; 21(3):367-73. PubMed ID: 8855448
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct evidence for antioxidant effect of Bcl-2 in PC12 rat pheochromocytoma cells.
    Tyurina YY; Tyurin VA; Carta G; Quinn PJ; Schor NF; Kagan VE
    Arch Biochem Biophys; 1997 Aug; 344(2):413-23. PubMed ID: 9264556
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Elucidation of biphasic alterations on acetylcholinesterase (AChE) activity and membrane fluidity in the structure-functional effects of tetracaine on AChE-associated membrane vesicles.
    Chen CH; Zuklie BM; Roth LG
    Arch Biochem Biophys; 1998 Mar; 351(1):135-40. PubMed ID: 9500847
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of hydrophobic interaction and antioxidant properties of the phenothiazine nucleus in mitochondrial and model membranes.
    Borges MB; Dos Santos CG; Yokomizo CH; Sood R; Vitovic P; Kinnunen PK; Rodrigues T; Nantes IL
    Free Radic Res; 2010 Sep; 44(9):1054-63. PubMed ID: 20815768
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction of the antioxidant flavonoid quercetin with planar lipid bilayers.
    Movileanu L; Neagoe I; Flonta ML
    Int J Pharm; 2000 Sep; 205(1-2):135-46. PubMed ID: 11000550
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Changes of dipole potential of phospholipid membranes resulted from flavonoid adsorption].
    Ostroumova OS; Efimova SS; Shchagina LV
    Biofizika; 2013; 58(3):474-80. PubMed ID: 24159816
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermodynamic versus kinetic control of antioxidant synergism between β-carotene and (iso)flavonoids and their glycosides in liposomes.
    Liang R; Chen CH; Han RM; Zhang JP; Skibsted LH
    J Agric Food Chem; 2010 Aug; 58(16):9221-7. PubMed ID: 20672803
    [TBL] [Abstract][Full Text] [Related]  

  • 37. When and why a water-soluble antioxidant becomes pro-oxidant during copper-induced low-density lipoprotein oxidation: a study using uric acid.
    Bagnati M; Perugini C; Cau C; Bordone R; Albano E; Bellomo G
    Biochem J; 1999 May; 340 ( Pt 1)(Pt 1):143-52. PubMed ID: 10229669
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reduction of membrane fluidity by antibacterial sophoraflavanone G isolated from Sophora exigua.
    Tsuchiya H; Iinuma M
    Phytomedicine; 2000 Apr; 7(2):161-5. PubMed ID: 10839220
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Random versus selective membrane phospholipid oxidation in apoptosis: role of phosphatidylserine.
    Fabisiak JP; Tyurina YY; Tyurin VA; Lazo JS; Kagan VE
    Biochemistry; 1998 Sep; 37(39):13781-90. PubMed ID: 9753467
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of proteolysis on the state of lipid phase in rat brain synaptosomal membranes.
    Aksentsev SL; Samoilenko SG; Kaler GV; Konev SV
    Arch Biochem Biophys; 1995 Jan; 316(1):47-51. PubMed ID: 7840651
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.