These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 15764191)
1. A new explanatory model of an SIR disease epidemic: a knowledge-based, probabilistic approach to epidemic analysis. Sayers BM; Angulo J Scand J Infect Dis; 2005; 37(1):55-60. PubMed ID: 15764191 [TBL] [Abstract][Full Text] [Related]
2. Concepts of diffusion theory and a graphic approach to the description of the epidemic flow of contagious disease. Angulo JJ; Pederneiras CA; Ebner W; Kimura EM; Megale P Public Health Rep; 1980; 95(5):478-85. PubMed ID: 7422812 [TBL] [Abstract][Full Text] [Related]
3. An integral equation model for the control of a smallpox outbreak. Aldis GK; Roberts MG Math Biosci; 2005 May; 195(1):1-22. PubMed ID: 15922002 [TBL] [Abstract][Full Text] [Related]
4. Individual-based computational modeling of smallpox epidemic control strategies. Burke DS; Epstein JM; Cummings DA; Parker JI; Cline KC; Singa RM; Chakravarty S Acad Emerg Med; 2006 Nov; 13(11):1142-9. PubMed ID: 17085740 [TBL] [Abstract][Full Text] [Related]
5. Temporal-spatial-social parameters in the spread of contagious disease. Angulo JJ; Takiguti CK; Sakuma ME; Kimura EM; Curti SP; Pederneiras CA Ecol Dis; 1983; 2(4):369-76. PubMed ID: 6681166 [TBL] [Abstract][Full Text] [Related]
6. Deterministic epidemic models with explicit household structure. House T; Keeling MJ Math Biosci; 2008 May; 213(1):29-39. PubMed ID: 18374370 [TBL] [Abstract][Full Text] [Related]
7. A model of spatial epidemic spread when individuals move within overlapping home ranges. Reluga TC; Medlock J; Galvani AP Bull Math Biol; 2006 Feb; 68(2):401-16. PubMed ID: 16794937 [TBL] [Abstract][Full Text] [Related]
8. A multi-species epidemic model with spatial dynamics. Arino J; Davis JR; Hartley D; Jordan R; Miller JM; van den Driessche P Math Med Biol; 2005 Jun; 22(2):129-42. PubMed ID: 15778332 [TBL] [Abstract][Full Text] [Related]
9. Optimal treatment of an SIR epidemic model with time delay. Zaman G; Kang YH; Jung IH Biosystems; 2009 Oct; 98(1):43-50. PubMed ID: 19464340 [TBL] [Abstract][Full Text] [Related]
11. Effects of behavioral changes in a smallpox attack model. Del Valle S; Hethcote H; Hyman JM; Castillo-Chavez C Math Biosci; 2005 Jun; 195(2):228-51. PubMed ID: 15913667 [TBL] [Abstract][Full Text] [Related]
16. Stochastic epidemic models: a survey. Britton T Math Biosci; 2010 May; 225(1):24-35. PubMed ID: 20102724 [TBL] [Abstract][Full Text] [Related]
17. Network analysis of Italian cattle trade patterns and evaluation of risks for potential disease spread. Natale F; Giovannini A; Savini L; Palma D; Possenti L; Fiore G; Calistri P Prev Vet Med; 2009 Dec; 92(4):341-50. PubMed ID: 19775765 [TBL] [Abstract][Full Text] [Related]
18. Epidemic patterns of infectious diseases from the results of the surveillance of infectious diseases in Japan. Nakamura Y; Yanagawa H; Nagai M Pediatr Infect Dis J; 1988 Apr; 7(4):262-6. PubMed ID: 3368259 [TBL] [Abstract][Full Text] [Related]
19. On global and local critical points of extended contact process on homogeneous trees. Sugimine N; Masuda N; Konno N; Aihara K Math Biosci; 2008 May; 213(1):13-7. PubMed ID: 18395230 [TBL] [Abstract][Full Text] [Related]
20. [Analysis of the development of an epidemic during the spread of the leading variant of a pathogen. A mathematical model]. Kolesin ID Biofizika; 1994; 39(5):927-30. PubMed ID: 7819321 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]