BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 15764351)

  • 1. Transient solution to the bioheat equation and optimization for magnetic fluid hyperthermia treatment.
    Bagaria HG; Johnson DT
    Int J Hyperthermia; 2005 Feb; 21(1):57-75. PubMed ID: 15764351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution to the bioheat equation for hyperthermia with La(1-x)Ag(y)MnO(3-delta) nanoparticles: the effect of temperature autostabilization.
    Atsarkin VA; Levkin LV; Posvyanskiy VS; Melnikov OV; Markelova MN; Gorbenko OY; Kaul AR
    Int J Hyperthermia; 2009 May; 25(3):240-7. PubMed ID: 19437239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of magnetic nanoparticle dispersion on temperature distribution in a spherical tissue in magnetic fluid hyperthermia using the lattice Boltzmann method.
    Golneshan AA; Lahonian M
    Int J Hyperthermia; 2011; 27(3):266-74. PubMed ID: 21501028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fundamental solutions to the bioheat equation and their application to magnetic fluid hyperthermia.
    Giordano MA; Gutierrez G; Rinaldi C
    Int J Hyperthermia; 2010; 26(5):475-84. PubMed ID: 20578812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical study of temperature distribution in a spherical tissue in magnetic fluid hyperthermia using lattice Boltzmann method.
    Lahonian M; Golneshan AA
    IEEE Trans Nanobioscience; 2011 Dec; 10(4):262-8. PubMed ID: 22271797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical analysis of local non-equilibrium heat transfer in layered spherical tissue during magnetic hyperthermia.
    Liu KC; Yang YC
    Comput Methods Biomech Biomed Engin; 2020 Oct; 23(13):968-980. PubMed ID: 32530754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical study on the multi-region bio-heat equation to model magnetic fluid hyperthermia (MFH) using low Curie temperature nanoparticles.
    Zhang C; Johnson DT; Brazel CS
    IEEE Trans Nanobioscience; 2008 Dec; 7(4):267-75. PubMed ID: 19203870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental validation of an inverse heat transfer algorithm for optimizing hyperthermia treatments.
    Gayzik FS; Scott EP; Loulou T
    J Biomech Eng; 2006 Aug; 128(4):505-15. PubMed ID: 16813442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement in treatment planning for magnetic nanoparticle hyperthermia: optimization of the heat absorption pattern.
    Salloum M; Ma R; Zhu L
    Int J Hyperthermia; 2009 Jun; 25(4):309-21. PubMed ID: 19670098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia.
    Fortin JP; Wilhelm C; Servais J; Ménager C; Bacri JC; Gazeau F
    J Am Chem Soc; 2007 Mar; 129(9):2628-35. PubMed ID: 17266310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative evaluation of hyperthermia heating modalities. I. Numerical analysis of thermal dosimetry bracketing cases.
    Roemer RB; Cetas TC; Oleson JR; Halac S; Matloubieh AY
    Radiat Res; 1984 Dec; 100(3):450-72. PubMed ID: 6505138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer.
    Li FR; Yan WH; Guo YH; Qi H; Zhou HX
    Int J Hyperthermia; 2009 Aug; 25(5):383-91. PubMed ID: 19391033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical applications of magnetic nanoparticles for hyperthermia.
    Thiesen B; Jordan A
    Int J Hyperthermia; 2008 Sep; 24(6):467-74. PubMed ID: 18608593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of the temperature distribution during hyperthermia treatment by isolated extremity perfusion.
    Gantenberg J; Mumme A; Zumtobel V; Werner J
    Int J Hyperthermia; 2001; 17(3):189-206. PubMed ID: 11347726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a new mini-invasive tumour hyperthermia probe using high-temperature water vapour.
    Yu TH; Zhou YX; Liu J
    J Med Eng Technol; 2004; 28(4):167-77. PubMed ID: 15371007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Magnetic thermotherapy of breast tumors: an experimental therapeutic approach].
    Hilger I; Andrä W; Hergt R; Hiergeist R; Kaiser WA
    Rofo; 2005 Apr; 177(4):507-15. PubMed ID: 15838755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic microspheres and tissue model studies for therapeutic applications.
    Ramachandran N; Mazuruk K
    Ann N Y Acad Sci; 2004 Nov; 1027():99-109. PubMed ID: 15644349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An analytical study of 'Poisson conduction shape factors' for two thermally significant vessels in a finite, heated tissue.
    Shrivastava D; Roemer RB
    Phys Med Biol; 2005 Aug; 50(15):3627-41. PubMed ID: 16030387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of interseed spacing, tissue perfusion, thermoseed temperatures and catheters in ferromagnetic hyperthermia: results from simulations using finite element models of thermoseeds and catheters.
    Tompkins DT; Vanderby R; Klein SA; Beckman WA; Steeves RA; Paliwal BR
    IEEE Trans Biomed Eng; 1994 Oct; 41(10):975-85. PubMed ID: 7959805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite volume analysis of temperature effects induced by active MRI implants: 2. Defects on active MRI implants causing hot spots.
    Busch MH; Vollmann W; Grönemeyer DH
    Biomed Eng Online; 2006 May; 5():35. PubMed ID: 16729878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.