BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

462 related articles for article (PubMed ID: 15764651)

  • 1. Imaging alpha-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map.
    Aksimentiev A; Schulten K
    Biophys J; 2005 Jun; 88(6):3745-61. PubMed ID: 15764651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring transmembrane transport through alpha-hemolysin with grid-steered molecular dynamics.
    Wells DB; Abramkina V; Aksimentiev A
    J Chem Phys; 2007 Sep; 127(12):125101. PubMed ID: 17902937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Explicit channel conductance: can it be computed?
    Anishkin A; Sukharev S
    Biophys J; 2005 Jun; 88(6):3742-3. PubMed ID: 15764668
    [No Abstract]   [Full Text] [Related]  

  • 4. The hinge portion of the S. aureus alpha-toxin crosses the lipid bilayer and is part of the trans-mouth of the channel.
    Krasilnikov OV; Yuldasheva LN; Merzlyak PG; Capistrano MF; Nogueira RA
    Biochim Biophys Acta; 1997 Oct; 1329(1):51-60. PubMed ID: 9370244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relation between ionic channel conductance and conductivity of media containing different nonelectrolytes. A novel method of pore size determination.
    Sabirov RZ; Krasilnikov OV; Ternovsky VI; Merzliak PG
    Gen Physiol Biophys; 1993 Apr; 12(2):95-111. PubMed ID: 7691679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model-based prediction of the alpha-hemolysin structure in the hexameric state.
    Furini S; Domene C; Rossi M; Tartagni M; Cavalcanti S
    Biophys J; 2008 Sep; 95(5):2265-74. PubMed ID: 18502806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion permeation through the alpha-hemolysin channel: theoretical studies based on Brownian dynamics and Poisson-Nernst-Plank electrodiffusion theory.
    Noskov SY; Im W; Roux B
    Biophys J; 2004 Oct; 87(4):2299-309. PubMed ID: 15454431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuum electrostatic calculations of the pKa of ionizable residues in an ion channel: dynamic vs. static input structure.
    Aguilella-Arzo M; Aguilella VM
    Eur Phys J E Soft Matter; 2010 Apr; 31(4):429-39. PubMed ID: 20419466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-energy-limited ion transport in subnanometer channels.
    Bonthuis DJ; Zhang J; Hornblower B; Mathé J; Shklovskii BI; Meller A
    Phys Rev Lett; 2006 Sep; 97(12):128104. PubMed ID: 17026003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion channels and bacterial infection: the case of beta-barrel pore-forming protein toxins of Staphylococcus aureus.
    Menestrina G; Dalla Serra M; Comai M; Coraiola M; Viero G; Werner S; Colin DA; Monteil H; Prévost G
    FEBS Lett; 2003 Sep; 552(1):54-60. PubMed ID: 12972152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous measurement of ionic current and fluorescence from single protein pores.
    Heron AJ; Thompson JR; Cronin B; Bayley H; Wallace MI
    J Am Chem Soc; 2009 Feb; 131(5):1652-3. PubMed ID: 19146373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of the noncovalent molecular adapter, beta-cyclodextrin, with the staphylococcal alpha-hemolysin pore.
    Gu LQ; Bayley H
    Biophys J; 2000 Oct; 79(4):1967-75. PubMed ID: 11023901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HlyA hemolysin of Vibrio cholerae O1 biotype E1 Tor. Identification of the hemolytic complex and evidence for the formation of anion-selective ion-permeable channels.
    Menzl K; Maier E; Chakraborty T; Benz R
    Eur J Biochem; 1996 Sep; 240(3):646-54. PubMed ID: 8856066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic transport through a protein nanopore: a Coarse-Grained Molecular Dynamics Study.
    Basdevant N; Dessaux D; Ramirez R
    Sci Rep; 2019 Oct; 9(1):15740. PubMed ID: 31673049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymeric nonelectrolytes to probe pore geometry: application to the alpha-toxin transmembrane channel.
    Merzlyak PG; Yuldasheva LN; Rodrigues CG; Carneiro CM; Krasilnikov OV; Bezrukov SM
    Biophys J; 1999 Dec; 77(6):3023-33. PubMed ID: 10585924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The charge state of an ion channel controls neutral polymer entry into its pore.
    Bezrukov SM; Kasianowicz JJ
    Eur Biophys J; 1997; 26(6):471-6. PubMed ID: 9404007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensing proteins outside of the box.
    van der Goot FG; Matile S
    Nat Biotechnol; 2000 Oct; 18(10):1037. PubMed ID: 11017035
    [No Abstract]   [Full Text] [Related]  

  • 18. Pore-forming properties of proteolytically nicked staphylococcal alpha-toxin: the ion channel in planar lipid bilayer membranes.
    Krasilnikov OV; Merzlyak PG; Yuldasheva LN; Azimova RK; Nogueira RA
    Med Microbiol Immunol; 1997 Jun; 186(1):53-61. PubMed ID: 9255767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel Bacillus thuringiensis (PS149B1) containing a Cry34Ab1/Cry35Ab1 binary toxin specific for the western corn rootworm Diabrotica virgifera virgifera LeConte forms ion channels in lipid membranes.
    Masson L; Schwab G; Mazza A; Brousseau R; Potvin L; Schwartz JL
    Biochemistry; 2004 Sep; 43(38):12349-57. PubMed ID: 15379574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Driven DNA transport into an asymmetric nanometer-scale pore.
    Henrickson SE; Misakian M; Robertson B; Kasianowicz JJ
    Phys Rev Lett; 2000 Oct; 85(14):3057-60. PubMed ID: 11006002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.