These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 15764663)

  • 1. Multiscale trend analysis of microtubule transport in melanophores.
    Zaliapin I; Semenova I; Kashina A; Rodionov V
    Biophys J; 2005 Jun; 88(6):4008-16. PubMed ID: 15764663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organelle transport along microtubules in Xenopus melanophores: evidence for cooperation between multiple motors.
    Levi V; Serpinskaya AS; Gratton E; Gelfand V
    Biophys J; 2006 Jan; 90(1):318-27. PubMed ID: 16214870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melanophores for microtubule dynamics and motility assays.
    Ikeda K; Semenova I; Zhapparova O; Rodionov V
    Methods Cell Biol; 2010; 97():401-14. PubMed ID: 20719282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exchange of microtubule molecular motors during melanosome transport in Xenopus laevis melanophores is triggered by collisions with intracellular obstacles.
    Bruno L; Echarte MM; Levi V
    Cell Biochem Biophys; 2008; 52(3):191-201. PubMed ID: 19002657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational model of dynein-dependent self-organization of microtubule asters.
    Cytrynbaum EN; Rodionov V; Mogilner A
    J Cell Sci; 2004 Mar; 117(Pt 8):1381-97. PubMed ID: 14996905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microtubule aster formation by dynein-dependent organelle transport.
    Nilsson H; Wallin M
    Cell Motil Cytoskeleton; 1998; 41(3):254-63. PubMed ID: 9829779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions and regulation of molecular motors in Xenopus melanophores.
    Gross SP; Tuma MC; Deacon SW; Serpinskaya AS; Reilein AR; Gelfand VI
    J Cell Biol; 2002 Mar; 156(5):855-65. PubMed ID: 11864991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanisms of pigment transport in melanophores.
    Tuma MC; Gelfand VI
    Pigment Cell Res; 1999 Oct; 12(5):283-94. PubMed ID: 10541038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-organization of a radial microtubule array by dynein-dependent nucleation of microtubules.
    Vorobjev I; Malikov V; Rodionov V
    Proc Natl Acad Sci U S A; 2001 Aug; 98(18):10160-5. PubMed ID: 11504928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myosin cooperates with microtubule motors during organelle transport in melanophores.
    Rogers SL; Gelfand VI
    Curr Biol; 1998 Jan; 8(3):161-4. PubMed ID: 9443916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CK1 activates minus-end-directed transport of membrane organelles along microtubules.
    Ikeda K; Zhapparova O; Brodsky I; Semenova I; Tirnauer JS; Zaliapin I; Rodionov V
    Mol Biol Cell; 2011 Apr; 22(8):1321-9. PubMed ID: 21307338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. When size does matter: organelle size influences the properties of transport mediated by molecular motors.
    De Rossi MC; Bruno L; Wolosiuk A; DespĆ³sito MA; Levi V
    Biochim Biophys Acta; 2013 Nov; 1830(11):5095-103. PubMed ID: 23872153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro reconstitution of fish melanophore pigment aggregation.
    Nilsson H; Steffen W; Palazzo RE
    Cell Motil Cytoskeleton; 2001 Jan; 48(1):1-10. PubMed ID: 11124706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Switching between microtubule- and actin-based transport systems in melanophores is controlled by cAMP levels.
    Rodionov V; Yi J; Kashina A; Oladipo A; Gross SP
    Curr Biol; 2003 Oct; 13(21):1837-47. PubMed ID: 14588239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bidirectional transport along microtubules.
    Welte MA
    Curr Biol; 2004 Jul; 14(13):R525-37. PubMed ID: 15242636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Actin dynamics is essential for myosin-based transport of membrane organelles.
    Semenova I; Burakov A; Berardone N; Zaliapin I; Slepchenko B; Svitkina T; Kashina A; Rodionov V
    Curr Biol; 2008 Oct; 18(20):1581-6. PubMed ID: 18951026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CLIP-170-dependent capture of membrane organelles by microtubules initiates minus-end directed transport.
    Lomakin AJ; Semenova I; Zaliapin I; Kraikivski P; Nadezhdina E; Slepchenko BM; Akhmanova A; Rodionov V
    Dev Cell; 2009 Sep; 17(3):323-33. PubMed ID: 19758557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Models of motor-assisted transport of intracellular particles.
    Smith DA; Simmons RM
    Biophys J; 2001 Jan; 80(1):45-68. PubMed ID: 11159382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation of the CLIP-170--dependent capture of membrane organelles by microtubules through fine tuning of microtubule assembly dynamics.
    Lomakin AJ; Kraikivski P; Semenova I; Ikeda K; Zaliapin I; Tirnauer JS; Akhmanova A; Rodionov V
    Mol Biol Cell; 2011 Nov; 22(21):4029-37. PubMed ID: 21880898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooperation between microtubule- and actin-based motor proteins.
    Brown SS
    Annu Rev Cell Dev Biol; 1999; 15():63-80. PubMed ID: 10611957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.