These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 15764679)

  • 1. Hemoglobin oxygen saturation measurements using resonance Raman intravital microscopy.
    Torres Filho IP; Terner J; Pittman RN; Somera LG; Ward KR
    Am J Physiol Heart Circ Physiol; 2005 Jul; 289(1):H488-95. PubMed ID: 15764679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of hemoglobin oxygen saturation using Raman microspectroscopy and 532-nm excitation.
    Torres Filho IP; Terner J; Pittman RN; Proffitt E; Ward KR
    J Appl Physiol (1985); 2008 Jun; 104(6):1809-17. PubMed ID: 18369097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygenation monitoring of tissue vasculature by resonance Raman spectroscopy.
    Ward KR; Barbee RW; Reynolds PS; Torres Filho IP; Tiba MH; Torres L; Pittman RN; Terner J
    Anal Chem; 2007 Feb; 79(4):1514-8. PubMed ID: 17297949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excitation wavelength-dependent changes in Raman spectra of whole blood and hemoglobin: comparison of the spectra with 514.5-, 720-, and 1064-nm excitation.
    Sato H; Chiba H; Tashiro H; Ozaki Y
    J Biomed Opt; 2001 Jul; 6(3):366-70. PubMed ID: 11516329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance Raman spectroscopy: a new technology for tissue oxygenation monitoring.
    Ward KR; Torres Filho I; Barbee RW; Torres L; Tiba MH; Reynolds PS; Pittman RN; Ivatury RR; Terner J
    Crit Care Med; 2006 Mar; 34(3):792-9. PubMed ID: 16521273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of "in vivo cryotechnique" to detect erythrocyte oxygen saturation in frozen mouse tissues with confocal Raman cryomicroscopy.
    Terada N; Ohno N; Saitoh S; Ohno S
    J Struct Biol; 2008 Aug; 163(2):147-54. PubMed ID: 18571433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation.
    Wood BR; Caspers P; Puppels GJ; Pandiancherri S; McNaughton D
    Anal Bioanal Chem; 2007 Mar; 387(5):1691-703. PubMed ID: 17151857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen saturation monitoring using resonance Raman spectroscopy.
    Torres Filho I; Nguyen NM; Jivani R; Terner J; Romfh P; Vakhshoori D; Ward KR
    J Surg Res; 2016 Apr; 201(2):425-31. PubMed ID: 27020828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NIR Raman spectra of whole human blood: effects of laser-induced and in vitro hemoglobin denaturation.
    Lemler P; Premasiri WR; DelMonaco A; Ziegler LD
    Anal Bioanal Chem; 2014 Jan; 406(1):193-200. PubMed ID: 24162820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The rate of oxygen release from single sinusoid of rat liver, determined by microspectroscopy.
    Yoshihara H; Fujita T; Harada N; Chen SS; Shiga T
    Med J Osaka Univ; 1993 Sep; 41-42(1-4):1-10. PubMed ID: 7476649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Myocardial microcirculation in humans--new approaches using MRI].
    Wacker CM; Bauer WR
    Herz; 2003 Mar; 28(2):74-81. PubMed ID: 12669220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raman microspectroscopy and imaging provides insights into heme aggregation and denaturation within human erythrocytes.
    Wood BR; Hammer L; Davis L; McNaughton D
    J Biomed Opt; 2005; 10(1):14005. PubMed ID: 15847586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visible Raman excitation laser induced power and exposure dependent effects in red blood cells.
    Ahlawat S; Kumar N; Uppal A; Kumar Gupta P
    J Biophotonics; 2017 Mar; 10(3):415-422. PubMed ID: 26990235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microvascular oxygen tension in the rat mesentery.
    Golub AS; Barker MC; Pittman RN
    Am J Physiol Heart Circ Physiol; 2008 Jan; 294(1):H21-8. PubMed ID: 17951364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxy- and carboxyhemoglobin saturation determination in frozen small vessels.
    Zhu NH; Weiss HR
    Am J Physiol; 1991 Feb; 260(2 Pt 2):H626-31. PubMed ID: 1996705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resonance Raman spectroscopy of optically trapped functional erythrocytes.
    Ramser K; Logg K; Goksör M; Enger J; Käll M; Hanstorp D
    J Biomed Opt; 2004; 9(3):593-600. PubMed ID: 15189098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring of chemical reactions within microreactors using an inverted Raman microscopic spectrometer.
    Fletcher PD; Haswell SJ; Zhang X
    Electrophoresis; 2003 Sep; 24(18):3239-45. PubMed ID: 14518051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring of blood oxygenation in brain by resonance Raman spectroscopy.
    Brazhe NA; Thomsen K; Lønstrup M; Brazhe AR; Nikelshparg EI; Maksimov GV; Lauritzen M; Sosnovtseva O
    J Biophotonics; 2018 Jun; 11(6):e201700311. PubMed ID: 29603883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo.
    Mahadevan-Jansen A; Mitchell MF; Ramanujam N; Utzinger U; Richards-Kortum R
    Photochem Photobiol; 1998 Sep; 68(3):427-31. PubMed ID: 9747597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CCD imaging in cryospectrophotometric determination of microvascular oxyhemoglobin saturations.
    Måseide K; Rofstad EK
    Am J Physiol; 1997 Dec; 273(6):H2910-8. PubMed ID: 9435631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.