These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Discovering molecular pathways from protein interaction and gene expression data. Segal E; Wang H; Koller D Bioinformatics; 2003; 19 Suppl 1():i264-71. PubMed ID: 12855469 [TBL] [Abstract][Full Text] [Related]
3. Discovering drug mode of action using reverse-engineered gene networks. Bansal M; Della Gatta G; Wierzbowski J; Gardner T; di Bernardo D Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():4739-42. PubMed ID: 17281300 [TBL] [Abstract][Full Text] [Related]
4. Constructing and analyzing a large-scale gene-to-gene regulatory network--lasso-constrained inference and biological validation. Gustafsson M; Hörnquist M; Lombardi A IEEE/ACM Trans Comput Biol Bioinform; 2005; 2(3):254-61. PubMed ID: 17044188 [TBL] [Abstract][Full Text] [Related]
5. Bayesian Orthogonal Least Squares (BOLS) algorithm for reverse engineering of gene regulatory networks. Kim CS BMC Bioinformatics; 2007 Jul; 8():251. PubMed ID: 17626641 [TBL] [Abstract][Full Text] [Related]
6. Unraveling condition specific gene transcriptional regulatory networks in Saccharomyces cerevisiae. Kim H; Hu W; Kluger Y BMC Bioinformatics; 2006 Mar; 7():165. PubMed ID: 16551355 [TBL] [Abstract][Full Text] [Related]
7. Inferring network interactions within a cell. Carter GW Brief Bioinform; 2005 Dec; 6(4):380-9. PubMed ID: 16420736 [TBL] [Abstract][Full Text] [Related]
8. Estimating gene regulatory networks and protein-protein interactions of Saccharomyces cerevisiae from multiple genome-wide data. Nariai N; Tamada Y; Imoto S; Miyano S Bioinformatics; 2005 Sep; 21 Suppl 2():ii206-12. PubMed ID: 16204105 [TBL] [Abstract][Full Text] [Related]
9. Understanding protein dispensability through machine-learning analysis of high-throughput data. Chen Y; Xu D Bioinformatics; 2005 Mar; 21(5):575-81. PubMed ID: 15479713 [TBL] [Abstract][Full Text] [Related]
10. Endoplasmic reticulum (ER) stress-induced reactive oxygen species (ROS) are detrimental for the fitness of a thioredoxin reductase mutant. Kritsiligkou P; Rand JD; Weids AJ; Wang X; Kershaw CJ; Grant CM J Biol Chem; 2018 Aug; 293(31):11984-11995. PubMed ID: 29871930 [TBL] [Abstract][Full Text] [Related]
11. Thioredoxin peroxidase is required for the transcriptional response to oxidative stress in budding yeast. Ross SJ; Findlay VJ; Malakasi P; Morgan BA Mol Biol Cell; 2000 Aug; 11(8):2631-42. PubMed ID: 10930459 [TBL] [Abstract][Full Text] [Related]
12. Minreg: inferring an active regulator set. Pe'er D; Regev A; Tanay A Bioinformatics; 2002; 18 Suppl 1():S258-67. PubMed ID: 12169555 [TBL] [Abstract][Full Text] [Related]
13. Modularized learning of genetic interaction networks from biological annotations and mRNA expression data. Lee PH; Lee D Bioinformatics; 2005 Jun; 21(11):2739-47. PubMed ID: 15797909 [TBL] [Abstract][Full Text] [Related]
14. Systematic interpretation of genetic interactions using protein networks. Kelley R; Ideker T Nat Biotechnol; 2005 May; 23(5):561-6. PubMed ID: 15877074 [TBL] [Abstract][Full Text] [Related]
15. Overlapping roles of the cytoplasmic and mitochondrial redox regulatory systems in the yeast Saccharomyces cerevisiae. Trotter EW; Grant CM Eukaryot Cell; 2005 Feb; 4(2):392-400. PubMed ID: 15701801 [TBL] [Abstract][Full Text] [Related]
16. A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Zou M; Conzen SD Bioinformatics; 2005 Jan; 21(1):71-9. PubMed ID: 15308537 [TBL] [Abstract][Full Text] [Related]
17. Identifying protein complexes based on the integration of PPI network and gene expression data. Chen W; Li M; Wu X; Wang J Int J Bioinform Res Appl; 2015; 11(1):30-44. PubMed ID: 25667384 [TBL] [Abstract][Full Text] [Related]
18. Role of thioredoxin reductase in the Yap1p-dependent response to oxidative stress in Saccharomyces cerevisiae. Carmel-Harel O; Stearman R; Gasch AP; Botstein D; Brown PO; Storz G Mol Microbiol; 2001 Feb; 39(3):595-605. PubMed ID: 11169101 [TBL] [Abstract][Full Text] [Related]
19. PathFinder: mining signal transduction pathway segments from protein-protein interaction networks. Bebek G; Yang J BMC Bioinformatics; 2007 Sep; 8():335. PubMed ID: 17854489 [TBL] [Abstract][Full Text] [Related]
20. Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks. Werhli AV; Grzegorczyk M; Husmeier D Bioinformatics; 2006 Oct; 22(20):2523-31. PubMed ID: 16844710 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]