These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 15765212)

  • 1. The minimum endpoint variance trajectory depends on the profile of the signal-dependent noise.
    Iguchi N; Sakaguchi Y; Ishida F
    Biol Cybern; 2005 Apr; 92(4):219-28. PubMed ID: 15765212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal-dependent noise determines motor planning.
    Harris CM; Wolpert DM
    Nature; 1998 Aug; 394(6695):780-4. PubMed ID: 9723616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of trajectory planning models for arm-reaching movements based on energy cost.
    Nishii J; Taniai Y
    Neural Comput; 2009 Sep; 21(9):2634-47. PubMed ID: 19548798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minimum acceleration criterion with constraints implies bang-bang control as an underlying principle for optimal trajectories of arm reaching movements.
    Ben-Itzhak S; Karniel A
    Neural Comput; 2008 Mar; 20(3):779-812. PubMed ID: 18045017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational motor control: feedback and accuracy.
    Guigon E; Baraduc P; Desmurget M
    Eur J Neurosci; 2008 Feb; 27(4):1003-16. PubMed ID: 18279368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An optimization principle for determining movement duration.
    Tanaka H; Krakauer JW; Qian N
    J Neurophysiol; 2006 Jun; 95(6):3875-86. PubMed ID: 16571740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of execution noise in movement variability.
    van Beers RJ; Haggard P; Wolpert DM
    J Neurophysiol; 2004 Feb; 91(2):1050-63. PubMed ID: 14561687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of viscous loads on motor planning.
    Thoroughman KA; Wang W; Tomov DN
    J Neurophysiol; 2007 Aug; 98(2):870-7. PubMed ID: 17522176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feedforward impedance control efficiently reduce motor variability.
    Osu R; Morishige K; Miyamoto H; Kawato M
    Neurosci Res; 2009 Sep; 65(1):6-10. PubMed ID: 19523999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal impedance control for task achievement in the presence of signal-dependent noise.
    Osu R; Kamimura N; Iwasaki H; Nakano E; Harris CM; Wada Y; Kawato M
    J Neurophysiol; 2004 Aug; 92(2):1199-215. PubMed ID: 15056685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different predictions by the minimum variance and minimum torque-change models on the skewness of movement velocity profiles.
    Tanaka H; Tai M; Qian N
    Neural Comput; 2004 Oct; 16(10):2021-40. PubMed ID: 15333205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The control parameters used by the CNS to guide the hand depend on the visuo-motor task: evidence from visually guided pointing.
    Thaler L; Todd JT
    Neuroscience; 2009 Mar; 159(2):578-98. PubMed ID: 19174179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal control of redundant muscles in step-tracking wrist movements.
    Haruno M; Wolpert DM
    J Neurophysiol; 2005 Dec; 94(6):4244-55. PubMed ID: 16079196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manifold reaching paradigm: how do we handle target redundancy?
    Berret B; Chiovetto E; Nori F; Pozzo T
    J Neurophysiol; 2011 Oct; 106(4):2086-102. PubMed ID: 21734107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motor planning of arm movements is direction-dependent in the gravity field.
    Gentili R; Cahouet V; Papaxanthis C
    Neuroscience; 2007 Mar; 145(1):20-32. PubMed ID: 17224242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A via-point time optimization algorithm for complex sequential trajectory formation.
    Wada Y; Kawato M
    Neural Netw; 2004 Apr; 17(3):353-64. PubMed ID: 15037353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dynamical neural network for hitting an approaching object.
    Dessing JC; Caljouw SR; Peper PE; Beek PJ
    Biol Cybern; 2004 Dec; 91(6):377-87. PubMed ID: 15599591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictive feedback control and Fitts' law.
    Gawthrop P; Lakie M; Loram I
    Biol Cybern; 2008 Mar; 98(3):229-38. PubMed ID: 18180947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of arm trajectory from a small number of neuron activities in the primary motor cortex.
    Koike Y; Hirose H; Sakurai Y; Iijima T
    Neurosci Res; 2006 Jun; 55(2):146-53. PubMed ID: 16563542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning and generation of goal-directed arm reaching from scratch.
    Kambara H; Kim K; Shin D; Sato M; Koike Y
    Neural Netw; 2009 May; 22(4):348-61. PubMed ID: 19121565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.