These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 15765548)

  • 1. The effect of temperature and lipid on the conformational transition of gramicidin A in lipid vesicles.
    Lin TH; Huang HB; Wei HA; Shiao SH; Chen YC
    Biopolymers; 2005 Jul; 78(4):179-86. PubMed ID: 15765548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environment- and sequence-dependent modulation of the double-stranded to single-stranded conformational transition of gramicidin A in membranes.
    Salom D; Pérez-Payá E; Pascal J; Abad C
    Biochemistry; 1998 Oct; 37(40):14279-91. PubMed ID: 9760266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of alpha-lactalbumins with lipid vesicles studied by tryptophan fluorescence.
    Grishchenko VM; Kalinichenko LP; Deikus GY; Veprintsev DB; Cawthern KM; Berliner LJ; Permyakov EA
    Biochem Mol Biol Int; 1996 Mar; 38(3):453-66. PubMed ID: 8829604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of C-terminal loop 13 of sodium-glucose cotransporter SGLT1 with lipid bilayers.
    Raja MM; Kinne RK
    Biochemistry; 2005 Jun; 44(25):9123-9. PubMed ID: 15966736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Changes in the structural state of boundary lipids in bacterial membrane under effect of the membranotropic antibiotic gramicidin S].
    Dergunov AD; Kaprel'iants AS; Ostrovskiĭ DN
    Biokhimiia; 1981 Aug; 46(8):1499-509. PubMed ID: 6168303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free-energy relationships for the interactions of tryptophan with phosphocholines.
    Blaser G; Sanderson JM; Wilson MR
    Org Biomol Chem; 2009 Dec; 7(24):5119-28. PubMed ID: 20024107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchrotron radiation linear dichroism spectroscopy of the antibiotic peptide gramicidin in lipid membranes.
    Hicks MR; Dafforn TR; Damianoglou A; Wormell P; Rodger A; Hoffmann SV
    Analyst; 2009 Aug; 134(8):1623-8. PubMed ID: 20448930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maxwell displacement current allows to study structural changes of gramicidin A in monolayers at the air-water interface.
    Vitovic P; Weis M; Tomcík P; Cirák J; Hianik T
    Bioelectrochemistry; 2007 May; 70(2):469-80. PubMed ID: 16938494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformation of gramicidin a in water: inference from analysis of hydrogen/deuterium exchange behavior by matrix assisted laser desorption ionization mass spectrometry.
    Jagannadham MV; Nagaraj R
    Biopolymers; 2005; 80(5):708-13. PubMed ID: 15887265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water accessibility to the tryptophan indole N-H sites of gramicidin A transmembrane channel: detection of positional shifts of tryptophans 11 and 13 along the channel axis upon cation binding.
    Maruyama T; Takeuchi H
    Biochemistry; 1997 Sep; 36(36):10993-1001. PubMed ID: 9283091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of lipid exposure of tryptophan residues in membrane peptides and proteins.
    Ladokhin AS
    Anal Biochem; 1999 Dec; 276(1):65-71. PubMed ID: 10585745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of phosphatidylethanolamine lipids in the stabilization of protein-lipid contacts.
    Scarlata S; Gruner SM
    Biophys Chem; 1997 Sep; 67(1-3):269-79. PubMed ID: 9397529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamics of melittin binding to lipid bilayers. Aggregation and pore formation.
    Klocek G; Schulthess T; Shai Y; Seelig J
    Biochemistry; 2009 Mar; 48(12):2586-96. PubMed ID: 19173655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvent history dependence of gramicidin-lipid interactions: a Raman and infrared spectroscopic study.
    Bouchard M; Auger M
    Biophys J; 1993 Dec; 65(6):2484-92. PubMed ID: 7508763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of gramicidin A--phospholipid interactions in Langmuir monolayers: analysis of their mechanical, thermodynamical, and electrical properties.
    Weis M; Vanco M; Vitovic P; Hianik T; Cirák J
    J Phys Chem B; 2006 Dec; 110(51):26272-8. PubMed ID: 17181285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-speed magic angle spinning solid-state 1H nuclear magnetic resonance study of the conformation of gramicidin A in lipid bilayers.
    Bouchard M; Davis JH; Auger M
    Biophys J; 1995 Nov; 69(5):1933-8. PubMed ID: 8580336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of indole N-H hydrogen bonding in the organization and dynamics of gramicidin channels.
    Chaudhuri A; Haldar S; Sun H; Koeppe RE; Chattopadhyay A
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):419-28. PubMed ID: 24148157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of hydrogen bonding and helix-lipid interactions in transmembrane helix association.
    Lee J; Im W
    J Am Chem Soc; 2008 May; 130(20):6456-62. PubMed ID: 18422318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photophysics of anthracene-indole systems in unilamellar vesicles of DMPC and POPC: Exciplex formation and temperature effects.
    Novaira AI; Previtali CM
    J Photochem Photobiol B; 2006 Nov; 85(2):102-8. PubMed ID: 16831556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of gramicidin D-RbCl complex at atomic resolution from low-temperature synchrotron data: interactions of double-stranded gramicidin channel contents and cations with channel wall.
    Główka ML; Olczak A; Bojarska J; Szczesio M; Duax WL; Burkhart BM; Pangborn WA; Langs DA; Wawrzak Z
    Acta Crystallogr D Biol Crystallogr; 2005 Apr; 61(Pt 4):433-41. PubMed ID: 15805598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.