BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 15765613)

  • 1. Fate of explosives and their metabolites in bioslurry treatment processes.
    Shen CF; Guiot SR; Thiboutot S; Ampleman G; Hawari J
    Biodegradation; 1997-1998; 8(5):339-47. PubMed ID: 15765613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Explosive biodegradation in soil slurry batch reactors amended with exogenous microorganisms.
    Shen CF; Hawari JA; Paquet L; Ampleman G; Thiboutot S; Guiot SR
    Water Sci Technol; 2001; 43(3):291-8. PubMed ID: 11381919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial degradation of explosives: biotransformation versus mineralization.
    Hawari J; Beaudet S; Halasz A; Thiboutot S; Ampleman G
    Appl Microbiol Biotechnol; 2000 Nov; 54(5):605-18. PubMed ID: 11131384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laboratory Column Evaluation of High Explosives Attenuation in Grenade Range Soils.
    Won J; Borden RC
    J Environ Qual; 2017 Sep; 46(5):968-974. PubMed ID: 28991974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequential biodegradation of TNT, RDX and HMX in a mixture.
    Sagi-Ben Moshe S; Ronen Z; Dahan O; Weisbrod N; Groisman L; Adar E; Nativ R
    Environ Pollut; 2009; 157(8-9):2231-8. PubMed ID: 19428165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradation and mineralization of isotopically labeled TNT and RDX in anaerobic marine sediments.
    Ariyarathna T; Vlahos P; Smith RW; Fallis S; Groshens T; Tobias C
    Environ Toxicol Chem; 2017 May; 36(5):1170-1180. PubMed ID: 27791286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of food-grade surfactant on bioremediation of explosives-contaminated soil.
    Boopathy R
    J Hazard Mater; 2002 May; 92(1):103-14. PubMed ID: 11976002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the attenuation of explosives in surface soils at military facilities: combined sorption and biodegradation.
    Fuller ME; Hatzinger PB; Rungmakol D; Schuster RL; Steffan RJ
    Environ Toxicol Chem; 2004 Feb; 23(2):313-24. PubMed ID: 14982377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation of nitro-explosives.
    Kanekar P; Dautpure P; Sarnaik S
    Indian J Exp Biol; 2003 Sep; 41(9):991-1001. PubMed ID: 15242292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformation and fate of 2,4,6-trinitrotoluene (TNT) in anaerobic bioslurry reactors under various aeration schemes: implications for the decontamination of soils.
    Newcombe DA; Crawford RL
    Biodegradation; 2007 Dec; 18(6):741-54. PubMed ID: 17273913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fate of RDX and TNT in agronomic plants.
    Vila M; Lorber-Pascal S; Laurent F
    Environ Pollut; 2007 Jul; 148(1):148-54. PubMed ID: 17254682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental behavior of explosives in groundwater from the Milan Army Ammunition Plant in aquatic and wetland plant treatments. Removal, mass balances and fate in groundwater of TNT and RDX.
    Best EP; Sprecher SL; Larson SL; Fredrickson HL; Bader DF
    Chemosphere; 1999 Jun; 38(14):3383-96. PubMed ID: 10390848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fate and stability of 14C-labeled 2,4,6-trinitrotoluene in contaminated soil following microbial bioremediation processes.
    Weiss M; Geyer R; Günther T; Kaestner M
    Environ Toxicol Chem; 2004 Sep; 23(9):2049-60. PubMed ID: 15378978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Type I nitroreductases in soil enterobacteria reduce TNT (2,4,6,-trinitrotoluene) and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine).
    Kitts CL; Green CE; Otley RA; Alvarez MA; Unkefer PJ
    Can J Microbiol; 2000 Mar; 46(3):278-82. PubMed ID: 10749541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental behavior of explosives in groundwater from the Milan Army Ammunition Plant in aquatic and wetland plant treatments. Uptake and fate of TNT and RDX in plants.
    Best EP; Sprecher SL; Larson SL; Fredrickson HL; Bader DF
    Chemosphere; 1999 Nov; 39(12):2057-72. PubMed ID: 10576106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaerobic treatment of pinkwater in a fluidized bed reactor containing GAC.
    Maloney SW; Adrian NR; Hickey RF; Heine RL
    J Hazard Mater; 2002 May; 92(1):77-88. PubMed ID: 11976000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic incorporation of the radiolabeled explosive TNT and metabolites into the organic soil matrix of contaminated soil after different treatment procedures.
    Drzyzga O; Bruns-Nagel D; Gorontzy T; Blotevogel KH; von Löw E
    Chemosphere; 1999 Apr; 38(9):2081-95. PubMed ID: 10101860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anaerobic biotransformation of explosives in aquifer slurries amended with ethanol and propylene glycol.
    Adrian NR; Arnett CM
    Chemosphere; 2007 Jan; 66(10):1849-56. PubMed ID: 17095047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multivariate functions for predicting the sorption of 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-1,3,5-tricyclohexane (RDX) among taxonomically distinct soils.
    Katseanes CK; Chappell MA; Hopkins BG; Durham BD; Price CL; Porter BE; Miller LF
    J Environ Manage; 2016 Nov; 182():101-110. PubMed ID: 27454101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic modification of western wheatgrass (Pascopyrum smithii) for the phytoremediation of RDX and TNT.
    Zhang L; Rylott EL; Bruce NC; Strand SE
    Planta; 2019 Apr; 249(4):1007-1015. PubMed ID: 30488285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.