These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 15766119)
21. Development of a pH-responsive drug delivery system for enantioselective-controlled delivery of racemic drugs. Suedee R; Jantarat C; Lindner W; Viernstein H; Songkro S; Srichana T J Control Release; 2010 Feb; 142(1):122-31. PubMed ID: 19857533 [TBL] [Abstract][Full Text] [Related]
22. RAFT polymerization: an avenue to functional polymeric micelles for drug delivery. Stenzel MH Chem Commun (Camb); 2008 Aug; (30):3486-503. PubMed ID: 18654693 [TBL] [Abstract][Full Text] [Related]
23. Design and synthesis of a new polymer drug delivery conjugate. Christie RJ; Findley DJ; Grainger DW Biomed Sci Instrum; 2004; 40():136-41. PubMed ID: 15133948 [TBL] [Abstract][Full Text] [Related]
24. Immobilization and release of the redox mediator ferrocene monocarboxylic acid from within cross-linked p(HEMA-co-PEGMA-co-HMMA) hydrogels. Boztas AO; Guiseppi-Elie A Biomacromolecules; 2009 Aug; 10(8):2135-43. PubMed ID: 19601642 [TBL] [Abstract][Full Text] [Related]
25. Drug transport in HEMA conjunctival inserts containing precipitated drug particles. Gupta C; Chauhan A J Colloid Interface Sci; 2010 Jul; 347(1):31-42. PubMed ID: 20381056 [TBL] [Abstract][Full Text] [Related]
26. Effect of binder additives on terbutaline hydrogels of alpha-PVA/NaCl/H(2)O system in drug delivery: I. Effect of gelatin and soluble starch. Shaheen SM; Takezoe K; Yamaura K Biomed Mater Eng; 2004; 14(4):371-82. PubMed ID: 15472386 [TBL] [Abstract][Full Text] [Related]
27. Poly(N-isopropylacrylamide-co-acrylamide) cross-linked thermoresponsive microspheres obtained from preformed polymers: Influence of the physico-chemical characteristics of drugs on their release profiles. Fundueanu G; Constantin M; Ascenzi P Acta Biomater; 2009 Jan; 5(1):363-73. PubMed ID: 18723416 [TBL] [Abstract][Full Text] [Related]
28. Investigation into the diffusion of water into HEMA-co-MOEP hydrogels. George KA; Wentrup-Byrne E; Hill DJ; Whittaker AK Biomacromolecules; 2004; 5(4):1194-9. PubMed ID: 15244430 [TBL] [Abstract][Full Text] [Related]
29. Respiratory delivery of theophylline by size-targeted starch microspheres for treatment of asthma. Momeni A; Mohammadi MH J Microencapsul; 2009 Dec; 26(8):701-10. PubMed ID: 19888879 [TBL] [Abstract][Full Text] [Related]
30. Amphiphilic polymer nanoparticles: characterization and assessment as new drug carriers. Dutta P; Shrivastava S; Dey J Macromol Biosci; 2009 Nov; 9(11):1116-26. PubMed ID: 19685495 [TBL] [Abstract][Full Text] [Related]
32. Chlorhexidine-releasing methacrylate dental composite materials. Leung D; Spratt DA; Pratten J; Gulabivala K; Mordan NJ; Young AM Biomaterials; 2005 Dec; 26(34):7145-53. PubMed ID: 15955557 [TBL] [Abstract][Full Text] [Related]
33. Psyllium and copolymers of 2-hydroxylethylmethacrylate and acrylamide-based novel devices for the use in colon specific antibiotic drug delivery. Singh B; Chauhan N; Kumar S; Bala R Int J Pharm; 2008 Mar; 352(1-2):74-80. PubMed ID: 18055144 [TBL] [Abstract][Full Text] [Related]
34. The characteristics of spontaneously forming physically cross-linked hydrogels composed of two water-soluble phospholipid polymers for oral drug delivery carrier I: hydrogel dissolution and insulin release under neutral pH condition. Nam K; Watanabe J; Ishihara K Eur J Pharm Sci; 2004 Nov; 23(3):261-70. PubMed ID: 15489127 [TBL] [Abstract][Full Text] [Related]
35. Biodegradable polymeric microspheres and nanospheres for drug delivery in the peritoneum. Kohane DS; Tse JY; Yeo Y; Padera R; Shubina M; Langer R J Biomed Mater Res A; 2006 May; 77(2):351-61. PubMed ID: 16425240 [TBL] [Abstract][Full Text] [Related]
36. Shear-bond strength between a new format of intra-buccal acrylic bioadhesive drug delivery system and adhesive systems. Pedrazzi V; Del Ciampo JO; Panzeri H; Lara EH; Issa JP; Do Nascimento C Minerva Stomatol; 2009 Apr; 58(4):145-50. PubMed ID: 19369920 [TBL] [Abstract][Full Text] [Related]
37. Influence of degree of substitution of HES-HEMA on the release of incorporated drug models from corresponding hydrogels. Schwoerer AD; Harling S; Scheibe K; Menzel H; Daniels R Eur J Pharm Biopharm; 2009 Nov; 73(3):351-6. PubMed ID: 19683570 [TBL] [Abstract][Full Text] [Related]
38. PEG-PLA block copolymer as potential drug carrier: preparation and characterization. Ben-Shabat S; Kumar N; Domb AJ Macromol Biosci; 2006 Dec; 6(12):1019-25. PubMed ID: 17128420 [TBL] [Abstract][Full Text] [Related]
39. Biocompatibility of HEMA copolymers designed for treatment of CNS diseases with polymer-encapsulated cells. Mokrý J; Karbanová J; Lukás J; Palecková V; Dvoránková B Biotechnol Prog; 2000; 16(5):897-904. PubMed ID: 11027187 [TBL] [Abstract][Full Text] [Related]
40. Fabrication of polymeric microparticles for drug delivery by soft lithography. Guan J; Ferrell N; James Lee L; Hansford DJ Biomaterials; 2006 Jul; 27(21):4034-41. PubMed ID: 16574217 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]