BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 15766131)

  • 1. [New progress in the study on and application of organic pollutants photodegraded by nano-TiO2].
    Zheng HL; Zhang JH; Xiong WQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Aug; 24(8):1003-8. PubMed ID: 15766131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of photocatalytic TiO2 nanofibers by electrospinning and its application to degradation of dye pollutants.
    Doh SJ; Kim C; Lee SG; Lee SJ; Kim H
    J Hazard Mater; 2008 Jun; 154(1-3):118-27. PubMed ID: 18006150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photochemical removal of aniline in aqueous solutions: switching from photocatalytic degradation to photo-enhanced polymerization recovery.
    Tang H; Li J; Bie Y; Zhu L; Zou J
    J Hazard Mater; 2010 Mar; 175(1-3):977-84. PubMed ID: 19931273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficiency of 1,4-dichlorobenzene degradation in water under photolysis, photocatalysis on TiO2 and sonolysis.
    Selli E; Bianchi CL; Pirola C; Cappelletti G; Ragaini V
    J Hazard Mater; 2008 May; 153(3):1136-41. PubMed ID: 17976904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photocatalytic oxidation of organic pollutants on titania-clay composites.
    Ménesi J; Körösi L; Bazsó E; Zöllmer V; Richardt A; Dékány I
    Chemosphere; 2008 Jan; 70(3):538-42. PubMed ID: 17698167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the hydrothermally synthesized nano-TiO2 crystallite and the photocatalytic degradation of Rhodamine B.
    Asiltürk M; Sayilkan F; Erdemoğlu S; Akarsu M; Sayilkan H; Erdemoğlu M; Arpaç E
    J Hazard Mater; 2006 Feb; 129(1-3):164-70. PubMed ID: 16188382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photocatalytic degradation of water-soluble organic pollutants on TiO2 modified with gold nanoparticles.
    Orlov A; Chan MS; Jefferson DA; Zhou D; Lynch RJ; Lambert RM
    Environ Technol; 2006 Jul; 27(7):747-52. PubMed ID: 16894818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of natural organic matter from water using a nano-structured photocatalyst coupled with filtration membrane.
    Sun D; Meng TT; Loong TH; Hwa TJ
    Water Sci Technol; 2004; 49(1):103-10. PubMed ID: 14979544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Janus nanostructures based on Au-TiO2 heterodimers and their photocatalytic activity in the oxidation of methanol.
    Pradhan S; Ghosh D; Chen S
    ACS Appl Mater Interfaces; 2009 Sep; 1(9):2060-5. PubMed ID: 20355833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of nano- and nonnano-catalytic electrodes for decontaminating municipal wastewater.
    Chang JH; Yang TJ; Tung CH
    J Hazard Mater; 2009 Apr; 163(1):152-7. PubMed ID: 18657362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of a microbial toxicity assay for monitoring treatment effectiveness of pentachlorophenol in water using UV photolysis and TiO2 photocatalysis.
    Kim JK; Choi K; Cho IH; Son HS; Zoh KD
    J Hazard Mater; 2007 Sep; 148(1-2):281-6. PubMed ID: 17368714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of photocatalysis as a post treatment method of a heterotrophic-autotrophic denitrification reactor effluent.
    Rizzo L; Rocca CD; Belgiorno V; Bekbolet M
    Chemosphere; 2008 Aug; 72(11):1706-11. PubMed ID: 18550144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel composite photocatalyst made of TiO(2) nanoparticles.
    Vega A; Imoberdorf GE; Keshmir M; Mohseni M
    Water Sci Technol; 2010; 61(4):903-9. PubMed ID: 20182068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures.
    Dong H; Zeng G; Tang L; Fan C; Zhang C; He X; He Y
    Water Res; 2015 Aug; 79():128-46. PubMed ID: 25980914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new submerged membrane photocatalysis reactor (SMPR) for fulvic acid removal using a nano-structured photocatalyst.
    Fu J; Ji M; Wang Z; Jin L; An D
    J Hazard Mater; 2006 Apr; 131(1-3):238-42. PubMed ID: 16266780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational design of carbon and TiO2 assembly materials: covered or strewn, which is better for photocatalysis?
    Cui GW; Wang WL; Ma MY; Zhang M; Xia XY; Han FY; Shi XF; Zhao YQ; Dong YB; Tang B
    Chem Commun (Camb); 2013 Jul; 49(57):6415-7. PubMed ID: 23752661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fulvic acid degradation using nanoparticle TiO2 in a submerged membrane photocatalysis reactor.
    Fu JF; Ji M; An DN
    J Environ Sci (China); 2005; 17(6):942-5. PubMed ID: 16465883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequential treatment via Trametes versicolor and UV/TiO2/Ru(x)Se(y) to reduce contaminants in waste water resulting from the bleaching process during paper production.
    Pedroza AM; Mosqueda R; Alonso-Vante N; Rodríguez-Vázquez R
    Chemosphere; 2007 Mar; 67(4):793-801. PubMed ID: 17123583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhance the photocatalytic activity for the degradation of organic contaminants in water by incorporating TiO2 with zero-valent iron.
    Hsieh WP; Pan JR; Huang C; Su YC; Juang YJ
    Sci Total Environ; 2010 Jan; 408(3):672-9. PubMed ID: 19896167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular imprinting for removing highly toxic organic pollutants.
    Shen X; Zhu L; Wang N; Ye L; Tang H
    Chem Commun (Camb); 2012 Jan; 48(6):788-98. PubMed ID: 22139426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.