These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 15766259)

  • 1. Phospholamban pentamer quaternary conformation determined by in-gel fluorescence anisotropy.
    Robia SL; Flohr NC; Thomas DD
    Biochemistry; 2005 Mar; 44(11):4302-11. PubMed ID: 15766259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phospholamban binds in a compact and ordered conformation to the Ca-ATPase.
    Li J; Xiong Y; Bigelow DJ; Squier TC
    Biochemistry; 2004 Jan; 43(2):455-63. PubMed ID: 14717600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational changes within the cytosolic portion of phospholamban upon release of Ca-ATPase inhibition.
    Li J; Bigelow DJ; Squier TC
    Biochemistry; 2004 Apr; 43(13):3870-9. PubMed ID: 15049694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation by cAMP-dependent protein kinase modulates the structural coupling between the transmembrane and cytosolic domains of phospholamban.
    Li J; Bigelow DJ; Squier TC
    Biochemistry; 2003 Sep; 42(36):10674-82. PubMed ID: 12962492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron paramagnetic resonance reveals a large-scale conformational change in the cytoplasmic domain of phospholamban upon binding to the sarcoplasmic reticulum Ca-ATPase.
    Kirby TL; Karim CB; Thomas DD
    Biochemistry; 2004 May; 43(19):5842-52. PubMed ID: 15134458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Depolymerization of phospholamban in the presence of calcium pump: a fluorescence energy transfer study.
    Reddy LG; Jones LR; Thomas DD
    Biochemistry; 1999 Mar; 38(13):3954-62. PubMed ID: 10194307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phospholamban oligomerization, quaternary structure, and sarco(endo)plasmic reticulum calcium ATPase binding measured by fluorescence resonance energy transfer in living cells.
    Kelly EM; Hou Z; Bossuyt J; Bers DM; Robia SL
    J Biol Chem; 2008 May; 283(18):12202-11. PubMed ID: 18287099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation-induced structural change in phospholamban and its mutants, detected by intrinsic fluorescence.
    Li M; Cornea RL; Autry JM; Jones LR; Thomas DD
    Biochemistry; 1998 May; 37(21):7869-77. PubMed ID: 9601048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ReAsH: another viable option for in vivo protein labelling in Dictyostelium.
    Hwang RD; Chen CC; Knecht DA
    J Microsc; 2009 Apr; 234(1):9-15. PubMed ID: 19335452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics studies on structure and dynamics of phospholamban monomer and pentamer in membranes.
    Kim T; Lee J; Im W
    Proteins; 2009 Jul; 76(1):86-98. PubMed ID: 19089978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic motion of helix A in the amino-terminal domain of calmodulin is stabilized upon calcium activation.
    Chen B; Mayer MU; Markillie LM; Stenoien DL; Squier TC
    Biochemistry; 2005 Jan; 44(3):905-14. PubMed ID: 15654746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cysteine reactivity and oligomeric structures of phospholamban and its mutants.
    Karim CB; Stamm JD; Karim J; Jones LR; Thomas DD
    Biochemistry; 1998 Sep; 37(35):12074-81. PubMed ID: 9724519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the oligomeric state of phospholamban variants in phospholipid bilayers from solid-state NMR measurements of rotational diffusion rates.
    Hughes E; Clayton JC; Middleton DA
    Biochemistry; 2005 Mar; 44(10):4055-66. PubMed ID: 15751982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of an orthogonal peptide binding motif for biarsenical multiuse affinity probes.
    Chen B; Cao H; Yan P; Mayer MU; Squier TC
    Bioconjug Chem; 2007; 18(4):1259-65. PubMed ID: 17569496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural uncoupling between opposing domains of oxidized calmodulin underlies the enhanced binding affinity and inhibition of the plasma membrane Ca-ATPase.
    Chen B; Mayer MU; Squier TC
    Biochemistry; 2005 Mar; 44(12):4737-47. PubMed ID: 15779900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fluorescence energy transfer method for analyzing protein oligomeric structure: application to phospholamban.
    Li M; Reddy LG; Bennett R; Silva ND; Jones LR; Thomas DD
    Biophys J; 1999 May; 76(5):2587-99. PubMed ID: 10233073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of phosphorylation on the structure and dynamics of phospholamban: a model from molecular simulations.
    Pantano S; Carafoli E
    Proteins; 2007 Mar; 66(4):930-40. PubMed ID: 17154419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence resonance energy transfer and anisotropy reveals both hetero- and homo-energy transfer in the pleckstrin homology-domain and the parathyroid hormone-receptor.
    Steinmeyer R; Harms GS
    Microsc Res Tech; 2009 Jan; 72(1):12-21. PubMed ID: 18785253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo design of a pentameric coiled-coil: decoding the motif for tetramer versus pentamer formation in water-soluble phospholamban.
    Slovic AM; Lear JD; DeGrado WF
    J Pept Res; 2005 Mar; 65(3):312-21. PubMed ID: 15787961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray structure of a water-soluble analog of the membrane protein phospholamban: sequence determinants defining the topology of tetrameric and pentameric coiled coils.
    Slovic AM; Stayrook SE; North B; Degrado WF
    J Mol Biol; 2005 May; 348(3):777-87. PubMed ID: 15826670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.