BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 15766290)

  • 1. Combined N- and C-terminal truncation of human apolipoprotein A-I yields a folded, functional central domain.
    Beckstead JA; Block BL; Bielicki JK; Kay CM; Oda MN; Ryan RO
    Biochemistry; 2005 Mar; 44(11):4591-9. PubMed ID: 15766290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformation and lipid binding of the N-terminal (1-44) domain of human apolipoprotein A-I.
    Zhu HL; Atkinson D
    Biochemistry; 2004 Oct; 43(41):13156-64. PubMed ID: 15476409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of tertiary structure domain properties on the functionality of apolipoprotein A-I.
    Tanaka M; Koyama M; Dhanasekaran P; Nguyen D; Nickel M; Lund-Katz S; Saito H; Phillips MC
    Biochemistry; 2008 Feb; 47(7):2172-80. PubMed ID: 18205410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid-binding studies of human apolipoprotein A-I and its terminally truncated mutants.
    Fang Y; Gursky O; Atkinson D
    Biochemistry; 2003 Nov; 42(45):13260-8. PubMed ID: 14609337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contributions of the N- and C-terminal helical segments to the lipid-free structure and lipid interaction of apolipoprotein A-I.
    Tanaka M; Dhanasekaran P; Nguyen D; Ohta S; Lund-Katz S; Phillips MC; Saito H
    Biochemistry; 2006 Aug; 45(34):10351-8. PubMed ID: 16922511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural studies of N- and C-terminally truncated human apolipoprotein A-I.
    Fang Y; Gursky O; Atkinson D
    Biochemistry; 2003 Jun; 42(22):6881-90. PubMed ID: 12779343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The lipid-free structure of apolipoprotein A-I: effects of amino-terminal deletions.
    Rogers DP; Roberts LM; Lebowitz J; Datta G; Anantharamaiah GM; Engler JA; Brouillette CG
    Biochemistry; 1998 Aug; 37(34):11714-25. PubMed ID: 9718294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of lipid-binding properties of the N-terminal helical segments in human apolipoprotein A-I using fragment peptides.
    Tanaka M; Tanaka T; Ohta S; Kawakami T; Konno H; Akaji K; Aimoto S; Saito H
    J Pept Sci; 2009 Jan; 15(1):36-42. PubMed ID: 19048603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial expression and characterization of chicken apolipoprotein A-I.
    Kiss RS; Kay CM; Ryan RO
    Protein Expr Purif; 1998 Apr; 12(3):353-60. PubMed ID: 9535703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The helix-hinge-helix structural motif in human apolipoprotein A-I determined by NMR spectroscopy.
    Wang G; Sparrow JT; Cushley RJ
    Biochemistry; 1997 Nov; 36(44):13657-66. PubMed ID: 9354635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deletion of central alpha-helices in human apolipoprotein A-I: effect on phospholipid association.
    Frank PG; Bergeron J; Emmanuel F; Lavigne JP; Sparks DL; Denèfle P; Rassart E; Marcel YL
    Biochemistry; 1997 Feb; 36(7):1798-806. PubMed ID: 9048564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Replacement of helix 1' enhances the lipid binding activity of apoE3 N-terminal domain.
    Redmond KA; Murphy C; Narayanaswami V; Kiss RS; Hauser P; Guigard E; Kay CM; Ryan RO
    FEBS J; 2006 Feb; 273(3):558-67. PubMed ID: 16420479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformation and lipid binding of a C-terminal (198-243) peptide of human apolipoprotein A-I.
    Zhu HL; Atkinson D
    Biochemistry; 2007 Feb; 46(6):1624-34. PubMed ID: 17279626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of the core lipid on the energetics of binding of ApoA-I to model lipoprotein particles of different sizes.
    Tanaka M; Saito H; Dhanasekaran P; Wehrli S; Handa T; Lund-Katz S; Phillips MC
    Biochemistry; 2005 Aug; 44(31):10689-95. PubMed ID: 16060677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies of synthetic peptides of human apolipoprotein A-I containing tandem amphipathic alpha-helixes.
    Mishra VK; Palgunachari MN; Datta G; Phillips MC; Lund-Katz S; Adeyeye SO; Segrest JP; Anantharamaiah GM
    Biochemistry; 1998 Jul; 37(28):10313-24. PubMed ID: 9665740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disruption of the C-terminal helix by single amino acid deletion is directly responsible for impaired cholesterol efflux ability of apolipoprotein A-I Nichinan.
    Kono M; Tanaka T; Tanaka M; Vedhachalam C; Chetty PS; Nguyen D; Dhanasekaran P; Lund-Katz S; Phillips MC; Saito H
    J Lipid Res; 2010 Apr; 51(4):809-18. PubMed ID: 19805625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The N-terminus of apolipoprotein A-V adopts a helix bundle molecular architecture.
    Wong K; Beckstead JA; Lee D; Weers PM; Guigard E; Kay CM; Ryan RO
    Biochemistry; 2008 Aug; 47(33):8768-74. PubMed ID: 18652480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The lipid binding activity of the exchangeable apolipoprotein apolipophorin-III correlates with the formation of a partially folded conformation.
    Soulages JL; Bendavid OJ
    Biochemistry; 1998 Jul; 37(28):10203-10. PubMed ID: 9665727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyrene fluorescence analysis offers new insights into the conformation of the lipoprotein-binding domain of human apolipoprotein E.
    Patel AB; Khumsupan P; Narayanaswami V
    Biochemistry; 2010 Mar; 49(8):1766-75. PubMed ID: 20073510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double belt structure of discoidal high density lipoproteins: molecular basis for size heterogeneity.
    Li L; Chen J; Mishra VK; Kurtz JA; Cao D; Klon AE; Harvey SC; Anantharamaiah GM; Segrest JP
    J Mol Biol; 2004 Nov; 343(5):1293-311. PubMed ID: 15491614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.