BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 15766656)

  • 41. A conditional feedback loop regulates Ras activity through EphA2.
    Macrae M; Neve RM; Rodriguez-Viciana P; Haqq C; Yeh J; Chen C; Gray JW; McCormick F
    Cancer Cell; 2005 Aug; 8(2):111-8. PubMed ID: 16098464
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes.
    Gohlke H; Kiel C; Case DA
    J Mol Biol; 2003 Jul; 330(4):891-913. PubMed ID: 12850155
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A chemical biology approach identifies a beta-2 adrenergic receptor agonist that causes human tumor regression by blocking the Raf-1/Mek-1/Erk1/2 pathway.
    Carie AE; Sebti SM
    Oncogene; 2007 May; 26(26):3777-88. PubMed ID: 17260025
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Lack of hippocalcin causes impairment in Ras/extracellular signal-regulated kinase cascade via a Raf-mediated activation process.
    Noguchi H; Kobayashi M; Miwa N; Takamatsu K
    J Neurosci Res; 2007 Mar; 85(4):837-44. PubMed ID: 17279541
    [TBL] [Abstract][Full Text] [Related]  

  • 45. RAS-mediated oncogenic signaling pathways in human malignancies.
    Khan AQ; Kuttikrishnan S; Siveen KS; Prabhu KS; Shanmugakonar M; Al-Naemi HA; Haris M; Dermime S; Uddin S
    Semin Cancer Biol; 2019 Feb; 54():1-13. PubMed ID: 29524560
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functional interactions of Raf and MEK with Jun-N-terminal kinase (JNK) result in a positive feedback loop on the oncogenic Ras signaling pathway.
    Adler V; Qu Y; Smith SJ; Izotova L; Pestka S; Kung HF; Lin M; Friedman FK; Chie L; Chung D; Boutjdir M; Pincus MR
    Biochemistry; 2005 Aug; 44(32):10784-95. PubMed ID: 16086581
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Signaling interplay in Ras superfamily function.
    Mitin N; Rossman KL; Der CJ
    Curr Biol; 2005 Jul; 15(14):R563-74. PubMed ID: 16051167
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Regulation of Ras p21 and RalA GTPases activity by quinine in mammary epithelial cells.
    Bhatia V; Esmati L; Bhullar RP
    Mol Cell Biochem; 2024 Mar; 479(3):567-577. PubMed ID: 37131040
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Principles of K-Ras effector organization and the role of oncogenic K-Ras in cancer initiation through G1 cell cycle deregulation.
    Nussinov R; Tsai CJ; Muratcioglu S; Jang H; Gursoy A; Keskin O
    Expert Rev Proteomics; 2015; 12(6):669-82. PubMed ID: 26496174
    [TBL] [Abstract][Full Text] [Related]  

  • 50. RabGEF1, a negative regulator of Ras signalling, mast cell activation and skin inflammation.
    Tam SY; Kalesnikoff J; Nakae S; Tsai M; Galli SJ
    Novartis Found Symp; 2005; 271():115-24; discussion 124-30, 145-51. PubMed ID: 16605131
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer.
    Roberts PJ; Der CJ
    Oncogene; 2007 May; 26(22):3291-310. PubMed ID: 17496923
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phosphatidylinositol-3-OH kinase or RAS pathway mutations in human breast cancer cell lines.
    Hollestelle A; Elstrodt F; Nagel JH; Kallemeijn WW; Schutte M
    Mol Cancer Res; 2007 Feb; 5(2):195-201. PubMed ID: 17314276
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Affinity with Raf is sufficient for Ras to efficiently induce rat mammary carcinomas.
    McFarlin DR; Lindstrom MJ; Gould MN
    Carcinogenesis; 2003 Jan; 24(1):99-105. PubMed ID: 12538354
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A novel RalGEF-like protein, RGL3, as a candidate effector for rit and Ras.
    Shao H; Andres DA
    J Biol Chem; 2000 Sep; 275(35):26914-24. PubMed ID: 10869344
    [TBL] [Abstract][Full Text] [Related]  

  • 55. c-Jun NH2-terminal kinase 2 is required for Ras transformation independently of activator protein 1.
    Nielsen C; Thastrup J; Bøttzauw T; Jäättelä M; Kallunki T
    Cancer Res; 2007 Jan; 67(1):178-85. PubMed ID: 17210697
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ras activation in response to phorbol ester proceeds independently of the EGFR via an unconventional nucleotide-exchange factor system in COS-7 cells.
    Rubio I; Rennert K; Wittig U; Beer K; Dürst M; Stang SL; Stone J; Wetzker R
    Biochem J; 2006 Sep; 398(2):243-56. PubMed ID: 16709153
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Analysis of Ras transformation of human thyroid epithelial cells.
    Poghosyan Z; Wynford-Thomas D
    Methods Enzymol; 2006; 407():648-60. PubMed ID: 16757359
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cancer targets in the Ras pathway.
    Rodriguez-Viciana P; Tetsu O; Oda K; Okada J; Rauen K; McCormick F
    Cold Spring Harb Symp Quant Biol; 2005; 70():461-7. PubMed ID: 16869784
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Herpesviruses: hijacking the Ras signaling pathway.
    Filippakis H; Spandidos DA; Sourvinos G
    Biochim Biophys Acta; 2010 Jul; 1803(7):777-85. PubMed ID: 20303365
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Flagellin and lipopolysaccharide stimulate the MEK-ERK signaling pathway in chicken heterophils through differential activation of the small GTPases, Ras and Rap1.
    Kogut MH; Genovese KJ; He H
    Mol Immunol; 2007 Mar; 44(7):1729-36. PubMed ID: 17045653
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.