BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 15766674)

  • 1. Distinguishing features of developing natural killer cells.
    Vosshenrich CA; Samson-Villéger SI; Di Santo JP
    Curr Opin Immunol; 2005 Apr; 17(2):151-8. PubMed ID: 15766674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental program of mouse Valpha14i NKT cells.
    Matsuda JL; Gapin L
    Curr Opin Immunol; 2005 Apr; 17(2):122-30. PubMed ID: 15766670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of natural killer cells from hematopoietic stem cells.
    Yoon SR; Chung JW; Choi I
    Mol Cells; 2007 Aug; 24(1):1-8. PubMed ID: 17846493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. T and B lymphocytes exert distinct effects on the homeostasis of NK cells.
    Jeannet G; Coudert JD; Held W
    Eur J Immunol; 2006 Oct; 36(10):2725-34. PubMed ID: 16955521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human natural killer cell development.
    Freud AG; Caligiuri MA
    Immunol Rev; 2006 Dec; 214():56-72. PubMed ID: 17100876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NK cell receptors as tools in cancer immunotherapy.
    Sentman CL; Barber MA; Barber A; Zhang T
    Adv Cancer Res; 2006; 95():249-92. PubMed ID: 16860660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional control of natural killer cell development and function.
    Hesslein DG; Lanier LL
    Adv Immunol; 2011; 109():45-85. PubMed ID: 21569912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of natural killer and natural killer-like T cells derived from ex vivo expanded and activated cord blood mononuclear cells: implications for adoptive cellular immunotherapy.
    Ayello J; van de Ven C; Cairo E; Hochberg J; Baxi L; Satwani P; Cairo MS
    Exp Hematol; 2009 Oct; 37(10):1216-29. PubMed ID: 19638292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A human CD34(+) subset resides in lymph nodes and differentiates into CD56bright natural killer cells.
    Freud AG; Becknell B; Roychowdhury S; Mao HC; Ferketich AK; Nuovo GJ; Hughes TL; Marburger TB; Sung J; Baiocchi RA; Guimond M; Caligiuri MA
    Immunity; 2005 Mar; 22(3):295-304. PubMed ID: 15780987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porcine T lymphocytes and NK cells--an update.
    Gerner W; Käser T; Saalmüller A
    Dev Comp Immunol; 2009 Mar; 33(3):310-20. PubMed ID: 18601948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anatomy of a murder--signal transduction pathways leading to activation of natural killer cells.
    Zompi S; Colucci F
    Immunol Lett; 2005 Feb; 97(1):31-9. PubMed ID: 15626473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127.
    Vosshenrich CA; García-Ojeda ME; Samson-Villéger SI; Pasqualetto V; Enault L; Richard-Le Goff O; Corcuff E; Guy-Grand D; Rocha B; Cumano A; Rogge L; Ezine S; Di Santo JP
    Nat Immunol; 2006 Nov; 7(11):1217-24. PubMed ID: 17013389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmental pathways that generate natural-killer-cell diversity in mice and humans.
    Huntington ND; Vosshenrich CA; Di Santo JP
    Nat Rev Immunol; 2007 Sep; 7(9):703-14. PubMed ID: 17717540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural killer and dendritic cell liaison: recent insights and open questions.
    Ferlazzo G
    Immunol Lett; 2005 Oct; 101(1):12-7. PubMed ID: 15941591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner.
    Ghiringhelli F; Ménard C; Terme M; Flament C; Taieb J; Chaput N; Puig PE; Novault S; Escudier B; Vivier E; Lecesne A; Robert C; Blay JY; Bernard J; Caillat-Zucman S; Freitas A; Tursz T; Wagner-Ballon O; Capron C; Vainchencker W; Martin F; Zitvogel L
    J Exp Med; 2005 Oct; 202(8):1075-85. PubMed ID: 16230475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone marrow versus thymic pathways of natural killer cell development.
    Di Santo JP; Vosshenrich CA
    Immunol Rev; 2006 Dec; 214():35-46. PubMed ID: 17100874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flagellin enhances NK cell proliferation and activation directly and through dendritic cell-NK cell interactions.
    Tsujimoto H; Uchida T; Efron PA; Scumpia PO; Verma A; Matsumoto T; Tschoeke SK; Ungaro RF; Ono S; Seki S; Clare-Salzler MJ; Baker HV; Mochizuki H; Ramphal R; Moldawer LL
    J Leukoc Biol; 2005 Oct; 78(4):888-97. PubMed ID: 16033815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NKG2D and natural cytotoxicity receptors are involved in natural killer cell interaction with self-antigen presenting cells and stromal cells.
    Poggi A; Prevosto C; Zancolli M; Canevali P; Musso A; Zocchi MR
    Ann N Y Acad Sci; 2007 Aug; 1109():47-57. PubMed ID: 17785290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Profiling killers; unravelling the pathways of human natural killer cell function.
    Scott GB; Meade JL; Cook GP
    Brief Funct Genomic Proteomic; 2008 Jan; 7(1):8-16. PubMed ID: 18208863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct receptor repertoire formation in mouse NK cell subsets regulated by MHC class I expression.
    Hayakawa Y; Watt SV; Takeda K; Smyth MJ
    J Leukoc Biol; 2008 Jan; 83(1):106-11. PubMed ID: 17940219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.