These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 15766674)
1. Distinguishing features of developing natural killer cells. Vosshenrich CA; Samson-Villéger SI; Di Santo JP Curr Opin Immunol; 2005 Apr; 17(2):151-8. PubMed ID: 15766674 [TBL] [Abstract][Full Text] [Related]
2. Developmental program of mouse Valpha14i NKT cells. Matsuda JL; Gapin L Curr Opin Immunol; 2005 Apr; 17(2):122-30. PubMed ID: 15766670 [TBL] [Abstract][Full Text] [Related]
3. T and B lymphocytes exert distinct effects on the homeostasis of NK cells. Jeannet G; Coudert JD; Held W Eur J Immunol; 2006 Oct; 36(10):2725-34. PubMed ID: 16955521 [TBL] [Abstract][Full Text] [Related]
5. NK cell receptors as tools in cancer immunotherapy. Sentman CL; Barber MA; Barber A; Zhang T Adv Cancer Res; 2006; 95():249-92. PubMed ID: 16860660 [TBL] [Abstract][Full Text] [Related]
6. Transcriptional control of natural killer cell development and function. Hesslein DG; Lanier LL Adv Immunol; 2011; 109():45-85. PubMed ID: 21569912 [TBL] [Abstract][Full Text] [Related]
7. Characterization of natural killer and natural killer-like T cells derived from ex vivo expanded and activated cord blood mononuclear cells: implications for adoptive cellular immunotherapy. Ayello J; van de Ven C; Cairo E; Hochberg J; Baxi L; Satwani P; Cairo MS Exp Hematol; 2009 Oct; 37(10):1216-29. PubMed ID: 19638292 [TBL] [Abstract][Full Text] [Related]
8. A human CD34(+) subset resides in lymph nodes and differentiates into CD56bright natural killer cells. Freud AG; Becknell B; Roychowdhury S; Mao HC; Ferketich AK; Nuovo GJ; Hughes TL; Marburger TB; Sung J; Baiocchi RA; Guimond M; Caligiuri MA Immunity; 2005 Mar; 22(3):295-304. PubMed ID: 15780987 [TBL] [Abstract][Full Text] [Related]
9. Porcine T lymphocytes and NK cells--an update. Gerner W; Käser T; Saalmüller A Dev Comp Immunol; 2009 Mar; 33(3):310-20. PubMed ID: 18601948 [TBL] [Abstract][Full Text] [Related]
10. Anatomy of a murder--signal transduction pathways leading to activation of natural killer cells. Zompi S; Colucci F Immunol Lett; 2005 Feb; 97(1):31-9. PubMed ID: 15626473 [TBL] [Abstract][Full Text] [Related]
11. A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127. Vosshenrich CA; García-Ojeda ME; Samson-Villéger SI; Pasqualetto V; Enault L; Richard-Le Goff O; Corcuff E; Guy-Grand D; Rocha B; Cumano A; Rogge L; Ezine S; Di Santo JP Nat Immunol; 2006 Nov; 7(11):1217-24. PubMed ID: 17013389 [TBL] [Abstract][Full Text] [Related]
12. Developmental pathways that generate natural-killer-cell diversity in mice and humans. Huntington ND; Vosshenrich CA; Di Santo JP Nat Rev Immunol; 2007 Sep; 7(9):703-14. PubMed ID: 17717540 [TBL] [Abstract][Full Text] [Related]
13. Natural killer and dendritic cell liaison: recent insights and open questions. Ferlazzo G Immunol Lett; 2005 Oct; 101(1):12-7. PubMed ID: 15941591 [TBL] [Abstract][Full Text] [Related]
14. CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. Ghiringhelli F; Ménard C; Terme M; Flament C; Taieb J; Chaput N; Puig PE; Novault S; Escudier B; Vivier E; Lecesne A; Robert C; Blay JY; Bernard J; Caillat-Zucman S; Freitas A; Tursz T; Wagner-Ballon O; Capron C; Vainchencker W; Martin F; Zitvogel L J Exp Med; 2005 Oct; 202(8):1075-85. PubMed ID: 16230475 [TBL] [Abstract][Full Text] [Related]
15. Bone marrow versus thymic pathways of natural killer cell development. Di Santo JP; Vosshenrich CA Immunol Rev; 2006 Dec; 214():35-46. PubMed ID: 17100874 [TBL] [Abstract][Full Text] [Related]