BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 15766756)

  • 1. Genetic screens for genes controlling motor nerve-muscle development and interactions.
    Birely J; Schneider VA; Santana E; Dosch R; Wagner DS; Mullins MC; Granato M
    Dev Biol; 2005 Apr; 280(1):162-76. PubMed ID: 15766756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathway selection by growth cones in the zebrafish central nervous system.
    Kuwada JY
    Perspect Dev Neurobiol; 1993; 1(4):195-203. PubMed ID: 8087544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle fiber differentiation in fish embryos as shown by in situ hybridization of a large repertoire of muscle-specific transcripts.
    Chauvigné F; Cauty C; Rallière C; Rescan PY
    Dev Dyn; 2005 Jun; 233(2):659-66. PubMed ID: 15844199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The zebrafish diwanka gene controls an early step of motor growth cone migration.
    Zeller J; Granato M
    Development; 1999 Aug; 126(15):3461-72. PubMed ID: 10393124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zebrafish topped is required for ventral motor axon guidance.
    Rodino-Klapac LR; Beattie CE
    Dev Biol; 2004 Sep; 273(2):308-20. PubMed ID: 15328015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuroepithelial cells require fucosylated glycans to guide the migration of vagus motor neuron progenitors in the developing zebrafish hindbrain.
    Ohata S; Kinoshita S; Aoki R; Tanaka H; Wada H; Tsuruoka-Kinoshita S; Tsuboi T; Watabe S; Okamoto H
    Development; 2009 May; 136(10):1653-63. PubMed ID: 19369395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuromuscular synaptogenesis in wild-type and mutant zebrafish.
    Panzer JA; Gibbs SM; Dosch R; Wagner D; Mullins MC; Granato M; Balice-Gordon RJ
    Dev Biol; 2005 Sep; 285(2):340-57. PubMed ID: 16102744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Migration of zebrafish spinal motor nerves into the periphery requires multiple myotome-derived cues.
    Zeller J; Schneider V; Malayaman S; Higashijima S; Okamoto H; Gui J; Lin S; Granato M
    Dev Biol; 2002 Dec; 252(2):241-56. PubMed ID: 12482713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Agrin is required for posterior development and motor axon outgrowth and branching in embryonic zebrafish.
    Kim MJ; Liu IH; Song Y; Lee JA; Halfter W; Balice-Gordon RJ; Linney E; Cole GJ
    Glycobiology; 2007 Feb; 17(2):231-47. PubMed ID: 17110391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of zebrafish sidetracked mutants reveals a novel role for Plexin A3 in intraspinal motor axon guidance.
    Palaisa KA; Granato M
    Development; 2007 Sep; 134(18):3251-7. PubMed ID: 17699603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions with identified muscle cells break motoneuron equivalence in embryonic zebrafish.
    Eisen JS; Melançon E
    Nat Neurosci; 2001 Nov; 4(11):1065-70. PubMed ID: 11600891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hox genes regulate muscle founder cell pattern autonomously and regulate morphogenesis through motor neurons.
    Dutta D; Umashankar M; Lewis EB; Rodrigues V; Vijayraghavan K
    J Neurogenet; 2010 Sep; 24(3):95-108. PubMed ID: 20615088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semaphorin 5A is a bifunctional axon guidance cue for axial motoneurons in vivo.
    Hilario JD; Rodino-Klapac LR; Wang C; Beattie CE
    Dev Biol; 2009 Feb; 326(1):190-200. PubMed ID: 19059233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. STAT3-dependent pathfinding and control of axonal branching and target selection.
    Conway G
    Dev Biol; 2006 Aug; 296(1):119-36. PubMed ID: 16729994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slow Muscle Precursors Lay Down a Collagen XV Matrix Fingerprint to Guide Motor Axon Navigation.
    Guillon E; Bretaud S; Ruggiero F
    J Neurosci; 2016 Mar; 36(9):2663-76. PubMed ID: 26937007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Embryonic motor activity and implications for regulating motoneuron axonal pathfinding in zebrafish.
    Menelaou E; Husbands EE; Pollet RG; Coutts CA; Ali DW; Svoboda KR
    Eur J Neurosci; 2008 Sep; 28(6):1080-96. PubMed ID: 18823502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zebrafish ftz-f1a (nuclear receptor 5a2) functions in skeletal muscle organization.
    Sheela SG; Lee WC; Lin WW; Chung BC
    Dev Biol; 2005 Oct; 286(2):377-90. PubMed ID: 16162335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slow muscle regulates the pattern of trunk neural crest migration in zebrafish.
    Honjo Y; Eisen JS
    Development; 2005 Oct; 132(20):4461-70. PubMed ID: 16162652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle growth patterns and regulation during fish ontogeny.
    Rescan PY
    Gen Comp Endocrinol; 2005 May; 142(1-2):111-6. PubMed ID: 15862555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zebrafish as a model for caveolin-associated muscle disease; caveolin-3 is required for myofibril organization and muscle cell patterning.
    Nixon SJ; Wegner J; Ferguson C; Méry PF; Hancock JF; Currie PD; Key B; Westerfield M; Parton RG
    Hum Mol Genet; 2005 Jul; 14(13):1727-43. PubMed ID: 15888488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.