BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 15767255)

  • 1. R-state AMP complex reveals initial steps of the quaternary transition of fructose-1,6-bisphosphatase.
    Iancu CV; Mukund S; Fromm HJ; Honzatko RB
    J Biol Chem; 2005 May; 280(20):19737-45. PubMed ID: 15767255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structures of the active site mutant (Arg-243-->Ala) in the T and R allosteric states of pig kidney fructose-1,6-bisphosphatase expressed in Escherichia coli.
    Stec B; Abraham R; Giroux E; Kantrowitz ER
    Protein Sci; 1996 Aug; 5(8):1541-53. PubMed ID: 8844845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fructose-1,6-bisphosphatase: arginine-22 is involved in stabilization of the T allosteric state.
    Lu G; Williams MK; Giroux EL; Kantrowitz ER
    Biochemistry; 1995 Oct; 34(41):13272-7. PubMed ID: 7577911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study of subunit interface residues of fructose-1,6-bisphosphatase by site-directed mutagenesis: effects on AMP and Mg2+ affinities.
    Shyur LF; Aleshin AE; Fromm HJ
    Biochemistry; 1996 Jun; 35(23):7492-8. PubMed ID: 8652527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel allosteric activation site in Escherichia coli fructose-1,6-bisphosphatase.
    Hines JK; Fromm HJ; Honzatko RB
    J Biol Chem; 2006 Jul; 281(27):18386-93. PubMed ID: 16670087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward a mechanism for the allosteric transition of pig kidney fructose-1,6-bisphosphatase.
    Zhang Y; Liang JY; Huang S; Lipscomb WN
    J Mol Biol; 1994 Dec; 244(5):609-24. PubMed ID: 7990142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The allosteric site of human liver fructose-1,6-bisphosphatase. Analysis of six AMP site mutants based on the crystal structure.
    Gidh-Jain M; Zhang Y; van Poelje PD; Liang JY; Huang S; Kim J; Elliott JT; Erion MD; Pilkis SJ; Raafat el-Maghrabi M
    J Biol Chem; 1994 Nov; 269(44):27732-8. PubMed ID: 7961695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid tetramers of porcine liver fructose-1,6-bisphosphatase reveal multiple pathways of allosteric inhibition.
    Nelson SW; Honzatko RB; Fromm HJ
    J Biol Chem; 2002 May; 277(18):15539-45. PubMed ID: 11854289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tryptophan fluorescence reveals the conformational state of a dynamic loop in recombinant porcine fructose-1,6-bisphosphatase.
    Nelson SW; Iancu CV; Choe JY; Honzatko RB; Fromm HJ
    Biochemistry; 2000 Sep; 39(36):11100-6. PubMed ID: 10998248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of fructose-1,6-bisphosphatase by a new class of allosteric effectors.
    Choe JY; Nelson SW; Arienti KL; Axe FU; Collins TL; Jones TK; Kimmich RD; Newman MJ; Norvell K; Ripka WC; Romano SJ; Short KM; Slee DH; Fromm HJ; Honzatko RB
    J Biol Chem; 2003 Dec; 278(51):51176-83. PubMed ID: 14530289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and biochemical characterization of fructose-1,6/sedoheptulose-1,7-bisphosphatase from the cyanobacterium Synechocystis strain 6803.
    Feng L; Sun Y; Deng H; Li D; Wan J; Wang X; Wang W; Liao X; Ren Y; Hu X
    FEBS J; 2014 Feb; 281(3):916-26. PubMed ID: 24286336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for an active T-state pig kidney fructose 1,6-bisphosphatase: interface residue Lys-42 is important for allosteric inhibition and AMP cooperativity.
    Lu G; Stec B; Giroux EL; Kantrowitz ER
    Protein Sci; 1996 Nov; 5(11):2333-42. PubMed ID: 8931152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structures of human muscle fructose-1,6-bisphosphatase: novel quaternary states, enhanced AMP affinity, and allosteric signal transmission pathway.
    Shi R; Chen ZY; Zhu DW; Li C; Shan Y; Xu G; Lin SX
    PLoS One; 2013; 8(9):e71242. PubMed ID: 24086250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structures of fructose 1,6-bisphosphatase: mechanism of catalysis and allosteric inhibition revealed in product complexes.
    Choe JY; Fromm HJ; Honzatko RB
    Biochemistry; 2000 Jul; 39(29):8565-74. PubMed ID: 10913263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-directed mutagenesis of residues at subunit interfaces of porcine fructose-1,6-bisphosphatase.
    Shyur LF; Aleshin AE; Honzatko RB; Fromm HJ
    J Biol Chem; 1996 Feb; 271(6):3005-10. PubMed ID: 8621693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Allosteric transition of fructose-1,6-bisphosphatase.
    Liang JY; Zhang Y; Huang S; Lipscomb WN
    Proc Natl Acad Sci U S A; 1993 Mar; 90(6):2132-6. PubMed ID: 8384713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The C1-C2 interface residue lysine 50 of pig kidney fructose-1, 6-bisphosphatase has a crucial role in the cooperative signal transmission of the AMP inhibition.
    Cárcamo JG; Yañez AJ; Ludwig HC; León O; Pinto RO; Reyes AM; Slebe JC
    Eur J Biochem; 2000 Apr; 267(8):2242-51. PubMed ID: 10759847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of inhibited fructose-1,6-bisphosphatase from Escherichia coli: distinct allosteric inhibition sites for AMP and glucose 6-phosphate and the characterization of a gluconeogenic switch.
    Hines JK; Kruesel CE; Fromm HJ; Honzatko RB
    J Biol Chem; 2007 Aug; 282(34):24697-706. PubMed ID: 17567577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Replacement of glutamic acid 29 with glutamine leads to a loss of cooperativity for AMP with porcine fructose-1,6-bisphosphatase.
    Chen M; Chen L; Fromm HJ
    J Biol Chem; 1994 Feb; 269(8):5554-8. PubMed ID: 7907084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Central cavity of fructose-1,6-bisphosphatase and the evolution of AMP/fructose 2,6-bisphosphate synergism in eukaryotic organisms.
    Gao Y; Shen L; Honzatko RB
    J Biol Chem; 2014 Mar; 289(12):8450-61. PubMed ID: 24436333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.