These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 15767256)

  • 1. Ribosomal RNA in Alzheimer disease is oxidized by bound redox-active iron.
    Honda K; Smith MA; Zhu X; Baus D; Merrick WC; Tartakoff AM; Hattier T; Harris PL; Siedlak SL; Fujioka H; Liu Q; Moreira PI; Miller FP; Nunomura A; Shimohama S; Perry G
    J Biol Chem; 2005 Jun; 280(22):20978-86. PubMed ID: 15767256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Impact of Oxidative Stress on Ribosomes: From Injury to Regulation.
    Shcherbik N; Pestov DG
    Cells; 2019 Nov; 8(11):. PubMed ID: 31684095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adventiously-bound redox active iron and copper are at the center of oxidative damage in Alzheimer disease.
    Perry G; Taddeo MA; Petersen RB; Castellani RJ; Harris PL; Siedlak SL; Cash AD; Liu Q; Nunomura A; Atwood CS; Smith MA
    Biometals; 2003 Mar; 16(1):77-81. PubMed ID: 12572666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Messenger RNA oxidation is an early event preceding cell death and causes reduced protein expression.
    Shan X; Chang Y; Lin CL
    FASEB J; 2007 Sep; 21(11):2753-64. PubMed ID: 17496160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of oxidized RNAs in Alzheimer's disease.
    Shan X; Lin CL
    Neurobiol Aging; 2006 May; 27(5):657-62. PubMed ID: 15979765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer's disease.
    Nunomura A; Perry G; Pappolla MA; Wade R; Hirai K; Chiba S; Smith MA
    J Neurosci; 1999 Mar; 19(6):1959-64. PubMed ID: 10066249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consequences of RNA oxidation on protein synthesis rate and fidelity: implications for the pathophysiology of neuropsychiatric disorders.
    Nunomura A; Lee HG; Zhu X; Perry G
    Biochem Soc Trans; 2017 Oct; 45(5):1053-1066. PubMed ID: 28778984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron-dependent cleavage of ribosomal RNA during oxidative stress in the yeast
    Zinskie JA; Ghosh A; Trainor BM; Shedlovskiy D; Pestov DG; Shcherbik N
    J Biol Chem; 2018 Sep; 293(37):14237-14248. PubMed ID: 30021840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic, metallic, and mitotic sources of oxidative stress in Alzheimer disease.
    Smith MA; Nunomura A; Zhu X; Takeda A; Perry G
    Antioxid Redox Signal; 2000; 2(3):413-20. PubMed ID: 11229355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative stress and redox-active iron in Alzheimer's disease.
    Honda K; Casadesus G; Petersen RB; Perry G; Smith MA
    Ann N Y Acad Sci; 2004 Mar; 1012():179-82. PubMed ID: 15105265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative stress damages rRNA inside the ribosome and differentially affects the catalytic center.
    Willi J; Küpfer P; Evéquoz D; Fernandez G; Katz A; Leumann C; Polacek N
    Nucleic Acids Res; 2018 Feb; 46(4):1945-1957. PubMed ID: 29309687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal RNA oxidation is a prominent feature of dementia with Lewy bodies.
    Nunomura A; Chiba S; Kosaka K; Takeda A; Castellani RJ; Smith MA; Perry G
    Neuroreport; 2002 Nov; 13(16):2035-9. PubMed ID: 12438921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron accumulation in Alzheimer disease is a source of redox-generated free radicals.
    Smith MA; Harris PL; Sayre LM; Perry G
    Proc Natl Acad Sci U S A; 1997 Sep; 94(18):9866-8. PubMed ID: 9275217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. rRNA and tRNA Bridges to Neuronal Homeostasis in Health and Disease.
    Tuorto F; Parlato R
    J Mol Biol; 2019 Apr; 431(9):1763-1779. PubMed ID: 30876917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuronal RNA oxidation is a prominent feature of familial Alzheimer's disease.
    Nunomura A; Chiba S; Lippa CF; Cras P; Kalaria RN; Takeda A; Honda K; Smith MA; Perry G
    Neurobiol Dis; 2004 Oct; 17(1):108-13. PubMed ID: 15350971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of peptide bond formation on the ribosome.
    Rodnina MV; Beringer M; Wintermeyer W
    Q Rev Biophys; 2006 Aug; 39(3):203-25. PubMed ID: 16893477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA oxidation in Alzheimer disease and related neurodegenerative disorders.
    Nunomura A; Hofer T; Moreira PI; Castellani RJ; Smith MA; Perry G
    Acta Neuropathol; 2009 Jul; 118(1):151-66. PubMed ID: 19271225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The 3D arrangement of the 23 S and 5 S rRNA in the Escherichia coli 50 S ribosomal subunit based on a cryo-electron microscopic reconstruction at 7.5 A resolution.
    Mueller F; Sommer I; Baranov P; Matadeen R; Stoldt M; Wöhnert J; Görlach M; van Heel M; Brimacombe R
    J Mol Biol; 2000 Apr; 298(1):35-59. PubMed ID: 10756104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of redox-active iron and copper to oxidative damage in Alzheimer disease.
    Castellani RJ; Honda K; Zhu X; Cash AD; Nunomura A; Perry G; Smith MA
    Ageing Res Rev; 2004 Jul; 3(3):319-26. PubMed ID: 15231239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation of the expansion segments in mammalian rRNA with the fine structure of the 80 S ribosome; a cryoelectron microscopic reconstruction of the rabbit reticulocyte ribosome at 21 A resolution.
    Dube P; Bacher G; Stark H; Mueller F; Zemlin F; van Heel M; Brimacombe R
    J Mol Biol; 1998 Jun; 279(2):403-21. PubMed ID: 9642046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.