These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 15767280)
1. Characterization of the frameshift signal of Edr, a mammalian example of programmed -1 ribosomal frameshifting. Manktelow E; Shigemoto K; Brierley I Nucleic Acids Res; 2005; 33(5):1553-63. PubMed ID: 15767280 [TBL] [Abstract][Full Text] [Related]
2. Comparative studies of frameshifting and nonframeshifting RNA pseudoknots: a mutational and NMR investigation of pseudoknots derived from the bacteriophage T2 gene 32 mRNA and the retroviral gag-pro frameshift site. Wang Y; Wills NM; Du Z; Rangan A; Atkins JF; Gesteland RF; Hoffman DW RNA; 2002 Aug; 8(8):981-96. PubMed ID: 12212853 [TBL] [Abstract][Full Text] [Related]
3. Identification and characterisation of a developmentally regulated mammalian gene that utilises -1 programmed ribosomal frameshifting. Shigemoto K; Brennan J; Walls E; Watson CJ; Stott D; Rigby PW; Reith AD Nucleic Acids Res; 2001 Oct; 29(19):4079-88. PubMed ID: 11574691 [TBL] [Abstract][Full Text] [Related]
4. Ribosomal pausing at a frameshifter RNA pseudoknot is sensitive to reading phase but shows little correlation with frameshift efficiency. Kontos H; Napthine S; Brierley I Mol Cell Biol; 2001 Dec; 21(24):8657-70. PubMed ID: 11713298 [TBL] [Abstract][Full Text] [Related]
5. Secondary structure and mutational analysis of the ribosomal frameshift signal of rous sarcoma virus. Marczinke B; Fisher R; Vidakovic M; Bloys AJ; Brierley I J Mol Biol; 1998 Nov; 284(2):205-25. PubMed ID: 9813113 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the frameshift stimulatory signal controlling a programmed -1 ribosomal frameshift in the human immunodeficiency virus type 1. Dulude D; Baril M; Brakier-Gingras L Nucleic Acids Res; 2002 Dec; 30(23):5094-102. PubMed ID: 12466532 [TBL] [Abstract][Full Text] [Related]
7. The role of RNA pseudoknot stem 1 length in the promotion of efficient -1 ribosomal frameshifting. Napthine S; Liphardt J; Bloys A; Routledge S; Brierley I J Mol Biol; 1999 May; 288(3):305-20. PubMed ID: 10329144 [TBL] [Abstract][Full Text] [Related]
8. Torsional restraint: a new twist on frameshifting pseudoknots. Plant EP; Dinman JD Nucleic Acids Res; 2005; 33(6):1825-33. PubMed ID: 15800212 [TBL] [Abstract][Full Text] [Related]
9. Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting. Hansen TM; Reihani SN; Oddershede LB; Sørensen MA Proc Natl Acad Sci U S A; 2007 Apr; 104(14):5830-5. PubMed ID: 17389398 [TBL] [Abstract][Full Text] [Related]
10. Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting. Giedroc DP; Theimer CA; Nixon PL J Mol Biol; 2000 Apr; 298(2):167-85. PubMed ID: 10764589 [TBL] [Abstract][Full Text] [Related]
11. A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal. Plant EP; Pérez-Alvarado GC; Jacobs JL; Mukhopadhyay B; Hennig M; Dinman JD PLoS Biol; 2005 Jun; 3(6):e172. PubMed ID: 15884978 [TBL] [Abstract][Full Text] [Related]
12. The stimulatory RNA of the Visna-Maedi retrovirus ribosomal frameshifting signal is an unusual pseudoknot with an interstem element. Pennell S; Manktelow E; Flatt A; Kelly G; Smerdon SJ; Brierley I RNA; 2008 Jul; 14(7):1366-77. PubMed ID: 18495941 [TBL] [Abstract][Full Text] [Related]
13. Identification and analysis of the gag-pol ribosomal frameshift site of feline immunodeficiency virus. Morikawa S; Bishop DH Virology; 1992 Feb; 186(2):389-97. PubMed ID: 1310175 [TBL] [Abstract][Full Text] [Related]
14. Structural and functional studies of retroviral RNA pseudoknots involved in ribosomal frameshifting: nucleotides at the junction of the two stems are important for efficient ribosomal frameshifting. Chen X; Chamorro M; Lee SI; Shen LX; Hines JV; Tinoco I; Varmus HE EMBO J; 1995 Feb; 14(4):842-52. PubMed ID: 7882986 [TBL] [Abstract][Full Text] [Related]
15. Mutational analysis of the "slippery-sequence" component of a coronavirus ribosomal frameshifting signal. Brierley I; Jenner AJ; Inglis SC J Mol Biol; 1992 Sep; 227(2):463-79. PubMed ID: 1404364 [TBL] [Abstract][Full Text] [Related]
16. Evidence for an RNA pseudoknot loop-helix interaction essential for efficient -1 ribosomal frameshifting. Liphardt J; Napthine S; Kontos H; Brierley I J Mol Biol; 1999 May; 288(3):321-35. PubMed ID: 10329145 [TBL] [Abstract][Full Text] [Related]
17. Possible involvement of coaxially stacked double pseudoknots in the regulation of -1 programmed ribosomal frameshifting in RNA viruses. Wang G; Yang Y; Huang X; Du Z J Biomol Struct Dyn; 2015; 33(7):1547-57. PubMed ID: 25204560 [TBL] [Abstract][Full Text] [Related]
19. Investigating the correlation between Xrn1-resistant RNAs and frameshifter pseudoknots. Dilweg IW; Oskam MG; Overbeek S; Olsthoorn RCL RNA Biol; 2023 Jan; 20(1):409-418. PubMed ID: 37400999 [TBL] [Abstract][Full Text] [Related]
20. A sequence required for -1 ribosomal frameshifting located four kilobases downstream of the frameshift site. Paul CP; Barry JK; Dinesh-Kumar SP; Brault V; Miller WA J Mol Biol; 2001 Jul; 310(5):987-99. PubMed ID: 11502008 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]