These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 15767309)

  • 1. The aerodynamics of Manduca sexta: digital particle image velocimetry analysis of the leading-edge vortex.
    Bomphrey RJ; Lawson NJ; Harding NJ; Taylor GK; Thomas AL
    J Exp Biol; 2005 Mar; 208(Pt 6):1079-94. PubMed ID: 15767309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack.
    Thomas AL; Taylor GK; Srygley RB; Nudds RL; Bomphrey RJ
    J Exp Biol; 2004 Nov; 207(Pt 24):4299-323. PubMed ID: 15531651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vortex wake and flight kinematics of a swift in cruising flight in a wind tunnel.
    Henningsson P; Spedding GR; Hedenström A
    J Exp Biol; 2008 Mar; 211(Pt 5):717-30. PubMed ID: 18281334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The aerodynamic effects of wing-wing interaction in flapping insect wings.
    Lehmann FO; Sane SP; Dickinson M
    J Exp Biol; 2005 Aug; 208(Pt 16):3075-92. PubMed ID: 16081606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rotational accelerations stabilize leading edge vortices on revolving fly wings.
    Lentink D; Dickinson MH
    J Exp Biol; 2009 Aug; 212(Pt 16):2705-19. PubMed ID: 19648415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual leading-edge vortices on flapping wings.
    Lu Y; Shen GX; Lai GJ
    J Exp Biol; 2006 Dec; 209(Pt 24):5005-16. PubMed ID: 17142689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight.
    Wang JK; Sun M
    J Exp Biol; 2005 Oct; 208(Pt 19):3785-804. PubMed ID: 16169955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional flow structures and evolution of the leading-edge vortices on a flapping wing.
    Lu Y; Shen GX
    J Exp Biol; 2008 Apr; 211(Pt 8):1221-30. PubMed ID: 18375846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Power distribution in the hovering flight of the hawk moth Manduca sexta.
    Zhao L; Deng X
    Bioinspir Biomim; 2009 Dec; 4(4):046003. PubMed ID: 19920311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerodynamics of gliding flight in common swifts.
    Henningsson P; Hedenström A
    J Exp Biol; 2011 Feb; 214(Pt 3):382-93. PubMed ID: 21228197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unsteady aerodynamics of insect flight.
    Ellington CP
    Symp Soc Exp Biol; 1995; 49():109-29. PubMed ID: 8571220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The vortex wake of blackcaps (Sylvia atricapilla L.) measured using high-speed digital particle image velocimetry (DPIV).
    Johansson LC; Hedenström A
    J Exp Biol; 2009 Oct; 212(Pt 20):3365-76. PubMed ID: 19801441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerodynamics of wing-assisted incline running in birds.
    Tobalske BW; Dial KP
    J Exp Biol; 2007 May; 210(Pt 10):1742-51. PubMed ID: 17488937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stereoscopic particle image velocimetry measurements of the three-dimensional flow field of a descending autorotating mahogany seed (Swietenia macrophylla).
    Salcedo E; Treviño C; Vargas RO; Martínez-Suástegui L
    J Exp Biol; 2013 Jun; 216(Pt 11):2017-30. PubMed ID: 23430990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leading-edge vortex improves lift in slow-flying bats.
    Muijres FT; Johansson LC; Barfield R; Wolf M; Spedding GR; Hedenström A
    Science; 2008 Feb; 319(5867):1250-3. PubMed ID: 18309085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induced airflow in flying insects I. A theoretical model of the induced flow.
    Sane SP
    J Exp Biol; 2006 Jan; 209(Pt 1):32-42. PubMed ID: 16354776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near- and far-field aerodynamics in insect hovering flight: an integrated computational study.
    Aono H; Liang F; Liu H
    J Exp Biol; 2008 Jan; 211(Pt 2):239-57. PubMed ID: 18165252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induced airflow in flying insects II. Measurement of induced flow.
    Sane SP; Jacobson NP
    J Exp Biol; 2006 Jan; 209(Pt 1):43-56. PubMed ID: 16354777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unconventional lift-generating mechanisms in free-flying butterflies.
    Srygley RB; Thomas AL
    Nature; 2002 Dec; 420(6916):660-4. PubMed ID: 12478291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How to perform measurements in a hovering animal's wake: physical modelling of the vortex wake of the hawkmoth, Manduca sexta.
    Tytell ED; Ellington CP
    Philos Trans R Soc Lond B Biol Sci; 2003 Sep; 358(1437):1559-66. PubMed ID: 14561347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.