These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 15767566)

  • 1. Inhibitors of type II NADH:menaquinone oxidoreductase represent a class of antitubercular drugs.
    Weinstein EA; Yano T; Li LS; Avarbock D; Avarbock A; Helm D; McColm AA; Duncan K; Lonsdale JT; Rubin H
    Proc Natl Acad Sci U S A; 2005 Mar; 102(12):4548-53. PubMed ID: 15767566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Type II NADH: menaquinone oxidoreductase of Mycobacterium tuberculosis.
    Teh JS; Yano T; Rubin H
    Infect Disord Drug Targets; 2007 Jun; 7(2):169-81. PubMed ID: 17970227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steady-state kinetics and inhibitory action of antitubercular phenothiazines on mycobacterium tuberculosis type-II NADH-menaquinone oxidoreductase (NDH-2).
    Yano T; Li LS; Weinstein E; Teh JS; Rubin H
    J Biol Chem; 2006 Apr; 281(17):11456-63. PubMed ID: 16469750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antitubercular pharmacodynamics of phenothiazines.
    Warman AJ; Rito TS; Fisher NE; Moss DM; Berry NG; O'Neill PM; Ward SA; Biagini GA
    J Antimicrob Chemother; 2013 Apr; 68(4):869-80. PubMed ID: 23228936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of ssDNA aptamers as potent inhibitors of Mycobacterium tuberculosis acetohydroxyacid synthase.
    Baig IA; Moon JY; Lee SC; Ryoo SW; Yoon MY
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1338-50. PubMed ID: 25988243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antitubercular polyhalogenated phenothiazines and phenoselenazine with reduced binding to CNS receptors.
    Nizi MG; Desantis J; Nakatani Y; Massari S; Mazzarella MA; Shetye G; Sabatini S; Barreca ML; Manfroni G; Felicetti T; Rushton-Green R; Hards K; Latacz G; Satała G; Bojarski AJ; Cecchetti V; Kolář MH; Handzlik J; Cook GM; Franzblau SG; Tabarrini O
    Eur J Med Chem; 2020 Sep; 201():112420. PubMed ID: 32526553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a small molecule with activity against drug-resistant and persistent tuberculosis.
    Wang F; Sambandan D; Halder R; Wang J; Batt SM; Weinrick B; Ahmad I; Yang P; Zhang Y; Kim J; Hassani M; Huszar S; Trefzer C; Ma Z; Kaneko T; Mdluli KE; Franzblau S; Chatterjee AK; Johnsson K; Mikusova K; Besra GS; Fütterer K; Robbins SH; Barnes SW; Walker JR; Jacobs WR; Schultz PG
    Proc Natl Acad Sci U S A; 2013 Jul; 110(27):E2510-7. PubMed ID: 23776209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Type-II NADH Dehydrogenase (NDH-2): a promising therapeutic target for antitubercular and antibacterial drug discovery.
    Sellamuthu S; Singh M; Kumar A; Singh SK
    Expert Opin Ther Targets; 2017 Jun; 21(6):559-570. PubMed ID: 28472892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrrolo[3,4-c]pyridine-1,3(2H)-diones: A Novel Antimycobacterial Class Targeting Mycobacterial Respiration.
    van der Westhuyzen R; Winks S; Wilson CR; Boyle GA; Gessner RK; Soares de Melo C; Taylor D; de Kock C; Njoroge M; Brunschwig C; Lawrence N; Rao SP; Sirgel F; van Helden P; Seldon R; Moosa A; Warner DF; Arista L; Manjunatha UH; Smith PW; Street LJ; Chibale K
    J Med Chem; 2015 Dec; 58(23):9371-81. PubMed ID: 26551248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mycobacterium tuberculosis type II NADH-menaquinone oxidoreductase catalyzes electron transfer through a two-site ping-pong mechanism and has two quinone-binding sites.
    Yano T; Rahimian M; Aneja KK; Schechter NM; Rubin H; Scott CP
    Biochemistry; 2014 Feb; 53(7):1179-90. PubMed ID: 24447297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the type 2 NADH:menaquinone oxidoreductases from Staphylococcus aureus and the bactericidal action of phenothiazines.
    Schurig-Briccio LA; Yano T; Rubin H; Gennis RB
    Biochim Biophys Acta; 2014 Jul; 1837(7):954-63. PubMed ID: 24709059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetylene containing cyclo(L-Tyr-L-Tyr)-analogs as mechanism-based inhibitors of CYP121A1 from Mycobacterium tuberculosis.
    Ortega Ugalde S; Wallraven K; Speer A; Bitter W; Grossmann TN; Commandeur JNM
    Biochem Pharmacol; 2020 Jul; 177():113938. PubMed ID: 32224137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel non-neuroleptic phenothiazines inhibit Mycobacterium tuberculosis replication.
    Salie S; Hsu NJ; Semenya D; Jardine A; Jacobs M
    J Antimicrob Chemother; 2014 Jun; 69(6):1551-8. PubMed ID: 24569630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gatifloxacin derivatives: synthesis, antimycobacterial activities, and inhibition of Mycobacterium tuberculosis DNA gyrase.
    Sriram D; Aubry A; Yogeeswari P; Fisher LM
    Bioorg Med Chem Lett; 2006 Jun; 16(11):2982-5. PubMed ID: 16554151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mycobacterium tuberculosis gyrase inhibitors as a new class of antitubercular drugs.
    Blanco D; Perez-Herran E; Cacho M; Ballell L; Castro J; González Del Río R; Lavandera JL; Remuiñán MJ; Richards C; Rullas J; Vázquez-Muñiz MJ; Woldu E; Zapatero-González MC; Angulo-Barturen I; Mendoza A; Barros D
    Antimicrob Agents Chemother; 2015 Apr; 59(4):1868-75. PubMed ID: 25583730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 4,5-Dihydro-1H-pyrazolo[3,4-d]pyrimidine containing phenothiazines as antitubercular agents.
    Siddiqui AB; Trivedi AR; Kataria VB; Shah VH
    Bioorg Med Chem Lett; 2014 Mar; 24(6):1493-5. PubMed ID: 24582983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unravelling the Secrets of Mycobacterial Cidality through the Lens of Antisense.
    Kaur P; Datta S; Shandil RK; Kumar N; Robert N; Sokhi UK; Guptha S; Narayanan S; Anbarasu A; Ramaiah S
    PLoS One; 2016; 11(5):e0154513. PubMed ID: 27144597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel N-linked aminopiperidine-based gyrase inhibitors with improved hERG and in vivo efficacy against Mycobacterium tuberculosis.
    Hameed P S; Patil V; Solapure S; Sharma U; Madhavapeddi P; Raichurkar A; Chinnapattu M; Manjrekar P; Shanbhag G; Puttur J; Shinde V; Menasinakai S; Rudrapatana S; Achar V; Awasthy D; Nandishaiah R; Humnabadkar V; Ghosh A; Narayan C; Ramya VK; Kaur P; Sharma S; Werngren J; Hoffner S; Panduga V; Kumar CN; Reddy J; Kumar K N M; Ganguly S; Bharath S; Bheemarao U; Mukherjee K; Arora U; Gaonkar S; Coulson M; Waterson D; Sambandamurthy VK; de Sousa SM
    J Med Chem; 2014 Jun; 57(11):4889-905. PubMed ID: 24809953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting Tuberculosis: Novel Scaffolds for Inhibiting Cytochrome
    Seitz C; Ahn SH; Wei H; Kyte M; Cook GM; Krause KL; McCammon JA
    J Chem Inf Model; 2024 Jul; 64(13):5232-5241. PubMed ID: 38874541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Mycobacterium tuberculosis cytochromes P450: physiology, biochemistry & molecular intervention.
    McLean KJ; Belcher J; Driscoll MD; Fernandez CC; Le Van D; Bui S; Golovanova M; Munro AW
    Future Med Chem; 2010 Aug; 2(8):1339-53. PubMed ID: 21426022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.