These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 15767568)

  • 1. Understanding biology by reverse engineering the control.
    Tomlin CJ; Axelrod JD
    Proc Natl Acad Sci U S A; 2005 Mar; 102(12):4219-20. PubMed ID: 15767568
    [No Abstract]   [Full Text] [Related]  

  • 2. Surviving heat shock: control strategies for robustness and performance.
    El-Samad H; Kurata H; Doyle JC; Gross CA; Khammash M
    Proc Natl Acad Sci U S A; 2005 Feb; 102(8):2736-41. PubMed ID: 15668395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Genetic regulation of the heat-shock response in Escherichia coli].
    Ramírez Santos J; Solís Guzmán G; Gómez Eichelmann MC
    Rev Latinoam Microbiol; 2001; 43(1):51-63. PubMed ID: 17061571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat shock response regulator is pinned to the membrane.
    Robinson R
    PLoS Biol; 2013 Dec; 11(12):e1001736. PubMed ID: 24358020
    [No Abstract]   [Full Text] [Related]  

  • 5. Autoregulation of the Escherichia coli heat shock response by the DnaK and DnaJ heat shock proteins.
    Liberek K; Georgopoulos C
    Proc Natl Acad Sci U S A; 1993 Dec; 90(23):11019-23. PubMed ID: 8248205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation and conservation of the heat-shock transcription factor sigma32.
    Yura T
    Genes Cells; 1996 Mar; 1(3):277-84. PubMed ID: 9133661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat shock transcription factor σ32 co-opts the signal recognition particle to regulate protein homeostasis in E. coli.
    Lim B; Miyazaki R; Neher S; Siegele DA; Ito K; Walter P; Akiyama Y; Yura T; Gross CA
    PLoS Biol; 2013 Dec; 11(12):e1001735. PubMed ID: 24358019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A chaperone network controls the heat shock response in E. coli.
    Guisbert E; Herman C; Lu CZ; Gross CA
    Genes Dev; 2004 Nov; 18(22):2812-21. PubMed ID: 15545634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response.
    Guisbert E; Yura T; Rhodius VA; Gross CA
    Microbiol Mol Biol Rev; 2008 Sep; 72(3):545-54. PubMed ID: 18772288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of the Escherichia coli heat-shock response.
    Bukau B
    Mol Microbiol; 1993 Aug; 9(4):671-80. PubMed ID: 7901731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hfq modulates the sigmaE-mediated envelope stress response and the sigma32-mediated cytoplasmic stress response in Escherichia coli.
    Guisbert E; Rhodius VA; Ahuja N; Witkin E; Gross CA
    J Bacteriol; 2007 Mar; 189(5):1963-73. PubMed ID: 17158661
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Miwa T; Taguchi H
    Proc Natl Acad Sci U S A; 2023 Aug; 120(32):e2304841120. PubMed ID: 37523569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reverse engineering: the architecture of biological networks.
    Khammash M
    Biotechniques; 2008 Mar; 44(3):323-9. PubMed ID: 18361784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small heat shock proteins, IbpA and IbpB, are involved in resistances to heat and superoxide stresses in Escherichia coli.
    Kitagawa M; Matsumura Y; Tsuchido T
    FEMS Microbiol Lett; 2000 Mar; 184(2):165-71. PubMed ID: 10713416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial molecular chaperones.
    Lund PA
    Adv Microb Physiol; 2001; 44():93-140. PubMed ID: 11407116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic interplay between antagonistic pathways controlling the sigma 32 level in Escherichia coli.
    Morita MT; Kanemori M; Yanagi H; Yura T
    Proc Natl Acad Sci U S A; 2000 May; 97(11):5860-5. PubMed ID: 10801971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The DnaK chaperone modulates the heat shock response of Escherichia coli by binding to the sigma 32 transcription factor.
    Liberek K; Galitski TP; Zylicz M; Georgopoulos C
    Proc Natl Acad Sci U S A; 1992 Apr; 89(8):3516-20. PubMed ID: 1565647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of the heat shock response in Escherichia coli: history and perspectives.
    Yura T
    Genes Genet Syst; 2019 Jul; 94(3):103-108. PubMed ID: 31281142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational adaptation in the E. coli sigma 32 protein in response to heat shock.
    Chakraborty A; Mukherjee S; Chattopadhyay R; Roy S; Chakrabarti S
    J Phys Chem B; 2014 May; 118(18):4793-802. PubMed ID: 24766146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperosmotic shock induces the sigma32 and sigmaE stress regulons of Escherichia coli.
    Bianchi AA; Baneyx F
    Mol Microbiol; 1999 Dec; 34(5):1029-38. PubMed ID: 10594827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.