These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 15767568)

  • 21. Hyperosmotic shock induces the sigma32 and sigmaE stress regulons of Escherichia coli.
    Bianchi AA; Baneyx F
    Mol Microbiol; 1999 Dec; 34(5):1029-38. PubMed ID: 10594827
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The global transcriptional response of Escherichia coli to induced sigma 32 protein involves sigma 32 regulon activation followed by inactivation and degradation of sigma 32 in vivo.
    Zhao K; Liu M; Burgess RR
    J Biol Chem; 2005 May; 280(18):17758-68. PubMed ID: 15757896
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiple layers of control govern expression of the Escherichia coli ibpAB heat-shock operon.
    Gaubig LC; Waldminghaus T; Narberhaus F
    Microbiology (Reading); 2011 Jan; 157(Pt 1):66-76. PubMed ID: 20864473
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increased mistranslation protects E. coli from protein misfolding stress due to activation of a RpoS-dependent heat shock response.
    Evans CR; Fan Y; Ling J
    FEBS Lett; 2019 Nov; 593(22):3220-3227. PubMed ID: 31419308
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Both ambient temperature and the DnaK chaperone machine modulate the heat shock response in Escherichia coli by regulating the switch between sigma 70 and sigma 32 factors assembled with RNA polymerase.
    Blaszczak A; Zylicz M; Georgopoulos C; Liberek K
    EMBO J; 1995 Oct; 14(20):5085-93. PubMed ID: 7588636
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pivotal role of the Francisella tularensis heat-shock sigma factor RpoH.
    Grall N; Livny J; Waldor M; Barel M; Charbit A; Meibom KL
    Microbiology (Reading); 2009 Aug; 155(Pt 8):2560-2572. PubMed ID: 19443547
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The RNA-binding protein HF-I, known as a host factor for phage Qbeta RNA replication, is essential for rpoS translation in Escherichia coli.
    Muffler A; Fischer D; Hengge-Aronis R
    Genes Dev; 1996 May; 10(9):1143-51. PubMed ID: 8654929
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of RpoH, a heat shock regulator protein, in Escherichia coli carbon starvation protein synthesis and survival.
    Jenkins DE; Auger EA; Matin A
    J Bacteriol; 1991 Mar; 173(6):1992-6. PubMed ID: 2002001
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heat shock transcription factor δ³² is targeted for degradation via an ubiquitin-like protein ThiS in Escherichia coli.
    Xu X; Niu Y; Liang K; Wang J; Li X; Yang Y
    Biochem Biophys Res Commun; 2015 Apr; 459(2):240-245. PubMed ID: 25721662
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stress-induced expression of the Escherichia coli phage shock protein operon is dependent on sigma 54 and modulated by positive and negative feedback mechanisms.
    Weiner L; Brissette JL; Model P
    Genes Dev; 1991 Oct; 5(10):1912-23. PubMed ID: 1717346
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel self-regulation strategy of a small heat shock protein for prodigious and rapid expression on demand.
    Miwa T; Taguchi H
    Curr Genet; 2021 Oct; 67(5):723-727. PubMed ID: 33839884
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heat-shock response transcriptional program enables high-yield and high-quality recombinant protein production in Escherichia coli.
    Zhang X; Liu Y; Genereux JC; Nolan C; Singh M; Kelly JW
    ACS Chem Biol; 2014 Sep; 9(9):1945-9. PubMed ID: 25051296
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Roles and regulation of the heat shock sigma factor sigma 32 in Escherichia coli.
    Yura T; Kawasaki Y; Kusukawa N; Nagai H; Wada C; Yano R
    Antonie Van Leeuwenhoek; 1990 Oct; 58(3):187-90. PubMed ID: 2256679
    [No Abstract]   [Full Text] [Related]  

  • 34. Structure-function studies of Escherichia coli RpoH (sigma32) by in vitro linker insertion mutagenesis.
    Narberhaus F; Balsiger S
    J Bacteriol; 2003 May; 185(9):2731-8. PubMed ID: 12700252
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The heat shock response of Escherichia coli.
    Arsène F; Tomoyasu T; Bukau B
    Int J Food Microbiol; 2000 Apr; 55(1-3):3-9. PubMed ID: 10791710
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulated degradation is a mechanism for suppressing stochastic fluctuations in gene regulatory networks.
    El-Samad H; Khammash M
    Biophys J; 2006 May; 90(10):3749-61. PubMed ID: 16500958
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcription of the mutL repair, miaA tRNA modification, hfq pleiotropic regulator, and hflA region protease genes of Escherichia coli K-12 from clustered Esigma32-specific promoters during heat shock.
    Tsui HC; Feng G; Winkler ME
    J Bacteriol; 1996 Oct; 178(19):5719-31. PubMed ID: 8824618
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of the heat-shock response.
    Yura T; Nakahigashi K
    Curr Opin Microbiol; 1999 Apr; 2(2):153-8. PubMed ID: 10322172
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Examination of the Tn5 transposase overproduction phenotype in Escherichia coli and localization of a suppressor of transposase overproduction killing that is an allele of rpoH.
    Yigit H; Reznikoff WS
    J Bacteriol; 1997 Mar; 179(5):1704-13. PubMed ID: 9045832
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcription of the ibpB heat-shock gene is under control of sigma(32)- and sigma(54)-promoters, a third regulon of heat-shock response.
    Kuczyńska-Wisńik D; Laskowska E; Taylor A
    Biochem Biophys Res Commun; 2001 Jun; 284(1):57-64. PubMed ID: 11374870
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.