BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 15768987)

  • 21. Photodissociation of heme distal methionine in ferrous cytochrome C revealed by subpicosecond time-resolved resonance Raman spectroscopy.
    Cianetti S; Négrerie M; Vos MH; Martin JL; Kruglik SG
    J Am Chem Soc; 2004 Nov; 126(43):13932-3. PubMed ID: 15506748
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mutation of distal residues of horseradish peroxidase: influence on substrate binding and cavity properties.
    Howes BD; Rodriguez-Lopez JN; Smith AT; Smulevich G
    Biochemistry; 1997 Feb; 36(6):1532-43. PubMed ID: 9063902
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accessibility of the distal heme face, rather than Fe-His bond strength, determines the heme-nitrosyl coordination number of cytochromes c': evidence from spectroscopic studies.
    Andrew CR; Kemper LJ; Busche TL; Tiwari AM; Kecskes MC; Stafford JM; Croft LC; Lu S; Moënne-Loccoz P; Huston W; Moir JW; Eady RR
    Biochemistry; 2005 Jun; 44(24):8664-72. PubMed ID: 15952773
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rupture of the hydrogen bond linking two Omega-loops induces the molten globule state at neutral pH in cytochrome c.
    Sinibaldi F; Piro MC; Howes BD; Smulevich G; Ascoli F; Santucci R
    Biochemistry; 2003 Jun; 42(24):7604-10. PubMed ID: 12809517
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of axial ligands on electron distribution and spin states in iron complexes of octaethyloxophlorin, intermediates in heme degradation.
    Rath SP; Olmstead MM; Balch AL
    J Am Chem Soc; 2004 May; 126(20):6379-86. PubMed ID: 15149235
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dioxygen activation by copper, heme and non-heme iron enzymes: comparison of electronic structures and reactivities.
    Decker A; Solomon EI
    Curr Opin Chem Biol; 2005 Apr; 9(2):152-63. PubMed ID: 15811799
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Probing the heme iron coordination structure of alkaline chloroperoxidase.
    Blanke SR; Martinis SA; Sligar SG; Hager LP; Rux JJ; Dawson JH
    Biochemistry; 1996 Nov; 35(46):14537-43. PubMed ID: 8931550
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modulation of metal displacements in a saddle distorted macrocycle: synthesis, structure, and properties of high-spin Fe(III) porphyrins and implications for the hemoproteins.
    Patra R; Chaudhary A; Ghosh SK; Rath SP
    Inorg Chem; 2008 Sep; 47(18):8324-35. PubMed ID: 18700752
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrafast heme dynamics in ferrous versus ferric cytochrome c studied by time-resolved resonance Raman and transient absorption spectroscopy.
    Negrerie M; Cianetti S; Vos MH; Martin JL; Kruglik SG
    J Phys Chem B; 2006 Jun; 110(25):12766-81. PubMed ID: 16800612
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Resonance Raman Spectra of Five-Coordinate Heme-Nitrosyl Cytochromes c': Effect of the Proximal Heme-NO Environment.
    Servid AE; McKay AL; Davis CA; Garton EM; Manole A; Dobbin PS; Hough MA; Andrew CR
    Biochemistry; 2015 Jun; 54(21):3320-7. PubMed ID: 25961377
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of arginine-127 at the proximal NO-binding site in determining the electronic structure and function of 5-coordinate NO-heme in cytochrome c' of Rhodobacter sphaeroides.
    Lee B; Usov OM; Grigoryants VM; Myers WK; Shapleigh JP; Scholes CP
    Biochemistry; 2009 Sep; 48(38):8985-93. PubMed ID: 19685879
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Resonance Raman spectra of Pseudomonas cytochrome c peroxidase.
    Rönnberg M; Osterlund K; Ellfolk N
    Biochim Biophys Acta; 1980 Nov; 626(1):23-30. PubMed ID: 6257304
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A hydrogen bond scaffold supported synthetic heme Fe(III)-O2(-) adduct.
    Mittra K; Chatterjee S; Samanta S; Sengupta K; Bhattacharjee H; Dey A
    Chem Commun (Camb); 2012 Nov; 48(85):10535-7. PubMed ID: 22992672
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel kinetic trap for NO release from cytochrome c': a possible mechanism for NO release from activated soluble guanylate cyclase.
    Andrew CR; Rodgers KR; Eady RR
    J Am Chem Soc; 2003 Aug; 125(32):9548-9. PubMed ID: 12903995
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effects of atropisomerism and porphyrin deformation on 57Fe shieldings in superstructured hemoprotein models.
    Gerothanassis IP; Kalodimos CG; Hawkes GE; Haycock P
    J Magn Reson; 1998 Mar; 131(1):163-5. PubMed ID: 9533921
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of iron displacement out of the porphyrin plane on the resonance Raman spectra of heme proteins and iron porphyrins.
    Stavrov SS
    Biophys J; 1993 Nov; 65(5):1942-50. PubMed ID: 8298023
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A biomimetic ferric hydroperoxo porphyrin intermediate.
    de Visser SP; Valentine JS; Nam W
    Angew Chem Int Ed Engl; 2010 Mar; 49(12):2099-101. PubMed ID: 20140930
    [No Abstract]   [Full Text] [Related]  

  • 38. Spectroscopic characterization of (57)Fe-enriched cytochrome c.
    Leu BM; Ching TH; Tran C; Sage JT
    Anal Biochem; 2012 Apr; 423(1):129-32. PubMed ID: 22310496
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fractional transfer of a free unpaired electron to overcome energy barriers in the formation of Fe(4+) from Fe(3+) during the core contraction of macrocycles: implication for heme distortion.
    Liu Q; Zhou X; Liu H; Zhang X; Zhou Z
    Org Biomol Chem; 2015 Mar; 13(10):2939-46. PubMed ID: 25609455
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conversion of electron configuration of iron ion through core contraction of porphyrin: implications for heme distortion.
    Zhou Z; Liu Q; Yan Z; Long G; Zhang X; Cao C; Jiang R
    Org Lett; 2013 Feb; 15(3):606-9. PubMed ID: 23323599
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.