These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Preparation, cellular transport, and activity of polyamidoamine-based dendritic nanodevices with a high drug payload. Kolhe P; Khandare J; Pillai O; Kannan S; Lieh-Lai M; Kannan RM Biomaterials; 2006 Feb; 27(4):660-9. PubMed ID: 16054211 [TBL] [Abstract][Full Text] [Related]
3. Targeting cancer cells with biotin-dendrimer conjugates. Yang W; Cheng Y; Xu T; Wang X; Wen LP Eur J Med Chem; 2009 Feb; 44(2):862-8. PubMed ID: 18550227 [TBL] [Abstract][Full Text] [Related]
4. In vivo efficacy of dendrimer-methylprednisolone conjugate formulation for the treatment of lung inflammation. Inapagolla R; Guru BR; Kurtoglu YE; Gao X; Lieh-Lai M; Bassett DJ; Kannan RM Int J Pharm; 2010 Oct; 399(1-2):140-7. PubMed ID: 20667503 [TBL] [Abstract][Full Text] [Related]
5. Effects of branching architecture and linker on the activity of hyperbranched polymer-drug conjugates. Perumal O; Khandare J; Kolhe P; Kannan S; Lieh-Lai M; Kannan RM Bioconjug Chem; 2009 May; 20(5):842-6. PubMed ID: 19402625 [TBL] [Abstract][Full Text] [Related]
6. PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Majoros IJ; Myc A; Thomas T; Mehta CB; Baker JR Biomacromolecules; 2006 Feb; 7(2):572-9. PubMed ID: 16471932 [TBL] [Abstract][Full Text] [Related]
7. Drug release characteristics of PAMAM dendrimer-drug conjugates with different linkers. Kurtoglu YE; Mishra MK; Kannan S; Kannan RM Int J Pharm; 2010 Jan; 384(1-2):189-94. PubMed ID: 19825406 [TBL] [Abstract][Full Text] [Related]
8. Dendrimer versus linear conjugate: Influence of polymeric architecture on the delivery and anticancer effect of paclitaxel. Khandare JJ; Jayant S; Singh A; Chandna P; Wang Y; Vorsa N; Minko T Bioconjug Chem; 2006; 17(6):1464-72. PubMed ID: 17105225 [TBL] [Abstract][Full Text] [Related]
13. Transport of dendrimer nanocarriers through epithelial cells via the transcellular route. Jevprasesphant R; Penny J; Attwood D; D'Emanuele A J Control Release; 2004 Jun; 97(2):259-67. PubMed ID: 15196753 [TBL] [Abstract][Full Text] [Related]
14. A novel anionic dendrimer for improved cellular delivery of antisense oligonucleotides. Hussain M; Shchepinov M; Sohail M; Benter IF; Hollins AJ; Southern EM; Akhtar S J Control Release; 2004 Sep; 99(1):139-55. PubMed ID: 15342187 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and assessment of first-generation polyamidoamine dendrimer prodrugs to enhance the cellular permeability of P-gp substrates. Najlah M; Freeman S; Attwood D; D'Emanuele A Bioconjug Chem; 2007; 18(3):937-46. PubMed ID: 17355118 [TBL] [Abstract][Full Text] [Related]
16. In vitro evaluation of dendrimer prodrugs for oral drug delivery. Najlah M; Freeman S; Attwood D; D'Emanuele A Int J Pharm; 2007 May; 336(1):183-90. PubMed ID: 17188439 [TBL] [Abstract][Full Text] [Related]
18. Wei X; Liu Z; Zhao Z Hell J Nucl Med; 2019; 22(1):78-79. PubMed ID: 30968863 [TBL] [Abstract][Full Text] [Related]
19. PEGylated PAMAM dendrimers as a potential drug delivery carrier: in vitro and in vivo comparative evaluation of covalently conjugated drug and noncovalent drug inclusion complex. Jiang YY; Tang GT; Zhang LH; Kong SY; Zhu SJ; Pei YY J Drug Target; 2010 Jun; 18(5):389-403. PubMed ID: 20055559 [TBL] [Abstract][Full Text] [Related]
20. Poly(amidoamine) dendrimer-based multifunctional engineered nanodevice for cancer therapy. Majoros IJ; Thomas TP; Mehta CB; Baker JR J Med Chem; 2005 Sep; 48(19):5892-9. PubMed ID: 16161993 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]