BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

531 related articles for article (PubMed ID: 15769528)

  • 1. Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes.
    Oh SH; Finõnes RR; Daraio C; Chen LH; Jin S
    Biomaterials; 2005 Aug; 26(24):4938-43. PubMed ID: 15769528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Deposition of hydroxyapatite on the titanium oxide nanotube in simulated body fluid].
    Wang Y; Tao J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Dec; 25(6):1354-7. PubMed ID: 19166208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrohydrodynamic coating of metal with nano-sized hydroxyapatite.
    Li X; Huang J; Ahmad Z; Edirisinghe M
    Biomed Mater Eng; 2007; 17(6):335-46. PubMed ID: 18032815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioactivation of titanium surfaces using coatings of TiO(2) nanotubes rapidly pre-loaded with synthetic hydroxyapatite.
    Kodama A; Bauer S; Komatsu A; Asoh H; Ono S; Schmuki P
    Acta Biomater; 2009 Jul; 5(6):2322-30. PubMed ID: 19332383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of surface charge on hydroxyapatite nucleation.
    Zhu P; Masuda Y; Koumoto K
    Biomaterials; 2004 Aug; 25(17):3915-21. PubMed ID: 15020168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydroxyapatite growth on anodic TiO2 nanotubes.
    Tsuchiya H; Macak JM; Müller L; Kunze J; Müller F; Greil P; Virtanen S; Schmuki P
    J Biomed Mater Res A; 2006 Jun; 77(3):534-41. PubMed ID: 16489589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface potential change in bioactive titanium metal during the process of apatite formation in simulated body fluid.
    Kim HM; Himeno T; Kawashita M; Lee JH; Kokubo T; Nakamura T
    J Biomed Mater Res A; 2003 Dec; 67(4):1305-9. PubMed ID: 14624517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioactive porous titanium: an alternative to surgical implants.
    de Medeiros WS; de Oliveira MV; Pereira LC; de Andrade MC
    Artif Organs; 2008 Apr; 32(4):277-82. PubMed ID: 18370941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-aspect ratio nano-noodles of alumina and titania.
    Friedman AL; Panaitescu E; Richter C; Menon L
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5864-8. PubMed ID: 19198318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plate, wire, mesh, microsphere, and microtube composed of sodium titanate nanotubes on a titanium metal template.
    Yada M; Inoue Y; Uota M; Torikai T; Watari T; Noda I; Hotokebuchi T
    Langmuir; 2007 Feb; 23(5):2815-23. PubMed ID: 17269803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction.
    Das K; Bose S; Bandyopadhyay A
    J Biomed Mater Res A; 2009 Jul; 90(1):225-37. PubMed ID: 18496867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-organized TiO2 nanotube layers as highly efficient photocatalysts.
    Macak JM; Zlamal M; Krysa J; Schmuki P
    Small; 2007 Feb; 3(2):300-4. PubMed ID: 17230591
    [No Abstract]   [Full Text] [Related]  

  • 13. The structure of titanate nanobelts used as seeds for the nucleation of hydroxyapatite at the surface of titanium implants.
    Conforto E; Caillard D; Müller L; Müller FA
    Acta Biomater; 2008 Nov; 4(6):1934-43. PubMed ID: 18585110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micropatterned TiO₂ nanotube surfaces for site-selective nucleation of hydroxyapatite from simulated body fluid.
    Pittrof A; Bauer S; Schmuki P
    Acta Biomater; 2011 Jan; 7(1):424-31. PubMed ID: 20883841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanocrystalline hydroxyapatite coatings on titanium: a new fast biomimetic method.
    Bigi A; Boanini E; Bracci B; Facchini A; Panzavolta S; Segatti F; Sturba L
    Biomaterials; 2005 Jul; 26(19):4085-9. PubMed ID: 15664635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells.
    Kuang D; Brillet J; Chen P; Takata M; Uchida S; Miura H; Sumioka K; Zakeeruddin SM; Grätzel M
    ACS Nano; 2008 Jun; 2(6):1113-6. PubMed ID: 19206327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of highly ordered TiO2 nanorod/nanotube adjacent arrays for photoelectrochemical applications.
    Zhang H; Liu P; Liu X; Zhang S; Yao X; An T; Amal R; Zhao H
    Langmuir; 2010 Jul; 26(13):11226-32. PubMed ID: 20384304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved bone-forming functionality on diameter-controlled TiO(2) nanotube surface.
    Brammer KS; Oh S; Cobb CJ; Bjursten LM; van der Heyde H; Jin S
    Acta Biomater; 2009 Oct; 5(8):3215-23. PubMed ID: 19447210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct fabrication of TiO2 nanoparticles deposited on hydroxyapatite crystals under mild hydrothermal conditions.
    Sujaridworakun P; Pongkao D; Ahniyaz A; Yamakawa Y; Watanabe T; Yoshimura M
    J Nanosci Nanotechnol; 2005 Jun; 5(6):875-9. PubMed ID: 16060146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of apatite formation on pure titanium treated with alkaline solution.
    Wang CX; Zhou X; Wang M
    Biomed Mater Eng; 2004; 14(1):5-11. PubMed ID: 14757948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.