BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 15769620)

  • 41. Cyclic GMP regulation of the L-type Ca(2+) channel current in human atrial myocytes.
    Vandecasteele G; Verde I; Rücker-Martin C; Donzeau-Gouge P; Fischmeister R
    J Physiol; 2001 Jun; 533(Pt 2):329-40. PubMed ID: 11389195
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modulation of rat thymocyte proliferative response through the inhibition of different cyclic nucleotide phosphodiesterase isoforms by means of selective inhibitors and cGMP-elevating agents.
    Marcoz P; Prigent AF; Lagarde M; Nemoz G
    Mol Pharmacol; 1993 Nov; 44(5):1027-35. PubMed ID: 8246905
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The PDE1-encoded low-affinity phosphodiesterase in the yeast Saccharomyces cerevisiae has a specific function in controlling agonist-induced cAMP signaling.
    Ma P; Wera S; Van Dijck P; Thevelein JM
    Mol Biol Cell; 1999 Jan; 10(1):91-104. PubMed ID: 9880329
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of cyclic nucleotide phosphodiesterase isozymes in intact canine trachealis.
    Torphy TJ; Zhou HL; Burman M; Huang LB
    Mol Pharmacol; 1991 Mar; 39(3):376-84. PubMed ID: 1848659
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cardiac Phosphodiesterases and Their Modulation for Treating Heart Disease.
    Kim GE; Kass DA
    Handb Exp Pharmacol; 2017; 243():249-269. PubMed ID: 27787716
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cyclic nucleotide hydrolysis in bovine aortic endothelial cells in culture: differential regulation in cobblestone and spindle phenotypes.
    Keravis T; Komas N; Lugnier C
    J Vasc Res; 2000; 37(4):235-49. PubMed ID: 10965223
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The calcium/calmodulin-dependent phosphodiesterase PDE1C down-regulates glucose-induced insulin secretion.
    Han P; Werber J; Surana M; Fleischer N; Michaeli T
    J Biol Chem; 1999 Aug; 274(32):22337-44. PubMed ID: 10428803
    [TBL] [Abstract][Full Text] [Related]  

  • 48. cGMP stimulates renin secretion in vivo by inhibiting phosphodiesterase-3.
    Beierwaltes WH
    Am J Physiol Renal Physiol; 2006 Jun; 290(6):F1376-81. PubMed ID: 16449359
    [TBL] [Abstract][Full Text] [Related]  

  • 49. cAMP-Specific phosphodiesterase-4 enzymes in the cardiovascular system: a molecular toolbox for generating compartmentalized cAMP signaling.
    Houslay MD; Baillie GS; Maurice DH
    Circ Res; 2007 Apr; 100(7):950-66. PubMed ID: 17431197
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cyclic nucleotide phosphodiesterases in pancreatic islets.
    Pyne NJ; Furman BL
    Diabetologia; 2003 Sep; 46(9):1179-89. PubMed ID: 12904862
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cyclic nucleotide phosphodiesterases: relating structure and function.
    Francis SH; Turko IV; Corbin JD
    Prog Nucleic Acid Res Mol Biol; 2001; 65():1-52. PubMed ID: 11008484
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Therapeutic Implications for PDE2 and cGMP/cAMP Mediated Crosstalk in Cardiovascular Diseases.
    Sadek MS; Cachorro E; El-Armouche A; Kämmerer S
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33050419
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Selective alteration of Ca2+-dependent and Ca2+-independent cyclic nucleotide phosphodiesterase activity in rat cerebral cortex by cyclic nucleotides and their analogs.
    Davis CW
    Biochim Biophys Acta; 1982 Jul; 705(1):1-7. PubMed ID: 6288105
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Profiling of functional phosphodiesterase in mesangial cells using a CRE-SEAP-based reporting system.
    Zhu Y; Yao J; Meng Y; Kasai A; Hiramatsu N; Hayakawa K; Miida T; Takeda M; Okada M; Kitamura M
    Br J Pharmacol; 2006 Jul; 148(6):833-44. PubMed ID: 16751794
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nitric oxide-induced changes in endothelial expression of phosphodiesterases 2, 3, and 5.
    Schankin CJ; Kruse LS; Reinisch VM; Jungmann S; Kristensen JC; Grau S; Ferrari U; Sinicina I; Goldbrunner R; Straube A; Kruuse C
    Headache; 2010 Mar; 50(3):431-41. PubMed ID: 19751368
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The identification and characterization of two cyclic nucleotide phosphodiesterases from bovine adrenal medulla.
    Sabatine JM; Coffee CJ
    Arch Biochem Biophys; 1986 Aug; 249(1):95-105. PubMed ID: 3017224
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Expression of cAMP and cGMP-phosphodiesterase isoenzymes 3, 4, and 5 in the human clitoris: immunohistochemical and molecular biology study.
    Oelke M; Hedlund P; Albrecht K; Ellinghaus P; Stief CG; Jonas U; Andersson KE; Uckert S
    Urology; 2006 May; 67(5):1111-6. PubMed ID: 16635522
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phosphodiesterases in neurodegenerative disorders.
    Bollen E; Prickaerts J
    IUBMB Life; 2012 Dec; 64(12):965-70. PubMed ID: 23129425
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Real-time monitoring of phosphodiesterase inhibition in intact cells.
    Herget S; Lohse MJ; Nikolaev VO
    Cell Signal; 2008 Aug; 20(8):1423-31. PubMed ID: 18467075
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Aggregation states of cyclic nucleotide phosphodiesterase of murine thymocytes.
    Sobolev AS; Rybalkin SD
    Cell Biochem Funct; 1986 Jul; 4(3):205-11. PubMed ID: 3015450
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.