BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 15769746)

  • 21. Identification of SNAREs involved in synaptotagmin VII-regulated lysosomal exocytosis.
    Rao SK; Huynh C; Proux-Gillardeaux V; Galli T; Andrews NW
    J Biol Chem; 2004 May; 279(19):20471-9. PubMed ID: 14993220
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The C2B domain of rabphilin directly interacts with SNAP-25 and regulates the docking step of dense core vesicle exocytosis in PC12 cells.
    Tsuboi T; Fukuda M
    J Biol Chem; 2005 Nov; 280(47):39253-9. PubMed ID: 16203731
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amisyn, a novel syntaxin-binding protein that may regulate SNARE complex assembly.
    Scales SJ; Hesser BA; Masuda ES; Scheller RH
    J Biol Chem; 2002 Aug; 277(31):28271-9. PubMed ID: 12145319
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Soluble NSF attachment protein receptors (SNAREs) in RBL-2H3 mast cells: functional role of syntaxin 4 in exocytosis and identification of a vesicle-associated membrane protein 8-containing secretory compartment.
    Paumet F; Le Mao J; Martin S; Galli T; David B; Blank U; Roa M
    J Immunol; 2000 Jun; 164(11):5850-7. PubMed ID: 10820264
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cysteine residues of SNAP-25 are required for SNARE disassembly and exocytosis, but not for membrane targeting.
    Washbourne P; Cansino V; Mathews JR; Graham M; Burgoyne RD; Wilson MC
    Biochem J; 2001 Aug; 357(Pt 3):625-34. PubMed ID: 11463334
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of tetanus neurotoxin insensitive vesicle-associated membrane protein (TI-VAMP) in vesicular transport mediating neurite outgrowth.
    Martinez-Arca S; Alberts P; Zahraoui A; Louvard D; Galli T
    J Cell Biol; 2000 May; 149(4):889-900. PubMed ID: 10811829
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SNAP23 depletion enables more SNAP25/calcium channel excitosome formation to increase insulin exocytosis in type 2 diabetes.
    Liang T; Qin T; Kang F; Kang Y; Xie L; Zhu D; Dolai S; Greitzer-Antes D; Baker RK; Feng D; Tuduri E; Ostenson CG; Kieffer TJ; Banks K; Pessin JE; Gaisano HY
    JCI Insight; 2020 Feb; 5(3):. PubMed ID: 32051343
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular analysis of SNAP-25 function in exocytosis.
    Graham ME; Washbourne P; Wilson MC; Burgoyne RD
    Ann N Y Acad Sci; 2002 Oct; 971():210-21. PubMed ID: 12438121
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synaptic proteins and SNARE complexes are localized in lipid rafts from rat brain synaptosomes.
    Gil C; Soler-Jover A; Blasi J; Aguilera J
    Biochem Biophys Res Commun; 2005 Apr; 329(1):117-24. PubMed ID: 15721282
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SNAP23 decreases insulin secretion by competitively inhibiting the interaction between SNAP25 and STX1A.
    Chen J; Wang Z; Wang T; Cheng J; Zhuang R; Wang W
    Biosci Rep; 2023 May; 43(5):. PubMed ID: 37057886
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lipid rafts and the regulation of exocytosis.
    Salaün C; James DJ; Chamberlain LH
    Traffic; 2004 Apr; 5(4):255-64. PubMed ID: 15030567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Syntaxin 1A has a specific binding site in the H3 domain that is critical for targeting of H+-ATPase to apical membrane of renal epithelial cells.
    Li G; Yang Q; Alexander EA; Schwartz JH
    Am J Physiol Cell Physiol; 2005 Sep; 289(3):C665-72. PubMed ID: 15872013
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of SNAP-23 in trafficking of H+-ATPase in cultured inner medullary collecting duct cells.
    Banerjee A; Li G; Alexander EA; Schwartz JH
    Am J Physiol Cell Physiol; 2001 Apr; 280(4):C775-81. PubMed ID: 11245593
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The vesicle- and target-SNARE proteins that mediate Glut4 vesicle fusion are localized in detergent-insoluble lipid rafts present on distinct intracellular membranes.
    Chamberlain LH; Gould GW
    J Biol Chem; 2002 Dec; 277(51):49750-4. PubMed ID: 12376543
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activation of store-operated calcium channels: assessment of the role of snare-mediated vesicular transport.
    Scott CC; Furuya W; Trimble WS; Grinstein S
    J Biol Chem; 2003 Aug; 278(33):30534-9. PubMed ID: 12764154
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Botulinum neurotoxin E-insensitive mutants of SNAP-25 fail to bind VAMP but support exocytosis.
    Washbourne P; Bortoletto N; Graham ME; Wilson MC; Burgoyne RD; Montecucco C
    J Neurochem; 1999 Dec; 73(6):2424-33. PubMed ID: 10582602
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synaptotagmin function in dense core vesicle exocytosis studied in cracked PC12 cells.
    Shin OH; Rizo J; Südhof TC
    Nat Neurosci; 2002 Jul; 5(7):649-56. PubMed ID: 12055633
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential phosphorylation of syntaxin and synaptosome-associated protein of 25 kDa (SNAP-25) isoforms.
    Risinger C; Bennett MK
    J Neurochem; 1999 Feb; 72(2):614-24. PubMed ID: 9930733
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Raft association of SNAP receptors acting in apical trafficking in Madin-Darby canine kidney cells.
    Lafont F; Verkade P; Galli T; Wimmer C; Louvard D; Simons K
    Proc Natl Acad Sci U S A; 1999 Mar; 96(7):3734-8. PubMed ID: 10097106
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cholecystokinin-regulated exocytosis in rat pancreatic acinar cells is inhibited by a C-terminus truncated mutant of SNAP-23.
    Huang X; Sheu L; Tamori Y; Trimble WS; Gaisano HY
    Pancreas; 2001 Aug; 23(2):125-33. PubMed ID: 11484914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.