These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 1576990)
1. An infrared study of 2H-bond variation in myoglobin revealed by high pressure. Le Tilly V; Sire O; Alpert B; Wong PT Eur J Biochem; 1992 May; 205(3):1061-5. PubMed ID: 1576990 [TBL] [Abstract][Full Text] [Related]
2. Acid-induced transformations of myoglobin. Characterization of a new equilibrium heme-pocket intermediate. Palaniappan V; Bocian DF Biochemistry; 1994 Nov; 33(47):14264-74. PubMed ID: 7947837 [TBL] [Abstract][Full Text] [Related]
3. Low-frequency vibrations in resonance Raman spectra of horse heart myoglobin. Iron-ligand and iron-nitrogen vibrational modes. Desbois A; Lutz M; Banerjee R Biochemistry; 1979 Apr; 18(8):1510-8. PubMed ID: 427129 [TBL] [Abstract][Full Text] [Related]
4. Identification of conformational substates involved in nitric oxide binding to ferric and ferrous myoglobin through difference Fourier transform infrared spectroscopy (FTIR). Miller LM; Pedraza AJ; Chance MR Biochemistry; 1997 Oct; 36(40):12199-207. PubMed ID: 9315857 [TBL] [Abstract][Full Text] [Related]
5. Pressure effects on the proximal heme pocket in myoglobin probed by Raman and near-infrared absorption spectroscopy. Galkin O; Buchter S; Tabirian A; Schulte A Biophys J; 1997 Nov; 73(5):2752-63. PubMed ID: 9370469 [TBL] [Abstract][Full Text] [Related]
6. Vibrational frequency shifts as a probe of hydrogen bonds: thermal expansion and glass transition of myoglobin in mixed solvents. Demmel F; Doster W; Petry W; Schulte A Eur Biophys J; 1997; 26(4):327-35. PubMed ID: 9378100 [TBL] [Abstract][Full Text] [Related]
7. High-pressure effects on horse heart metmyoglobin studied by small-angle neutron scattering. Loupiac C; Bonetti M; Pin S; Calmettes P Eur J Biochem; 2002 Oct; 269(19):4731-7. PubMed ID: 12354103 [TBL] [Abstract][Full Text] [Related]
8. Comparative Fourier transform infrared spectroscopy study of cold-, pressure-, and heat-induced unfolding and aggregation of myoglobin. Meersman F; Smeller L; Heremans K Biophys J; 2002 May; 82(5):2635-44. PubMed ID: 11964250 [TBL] [Abstract][Full Text] [Related]
9. Redox-induced conformational changes in myoglobin and hemoglobin: electrochemistry and ultraviolet-visible and Fourier transform infrared difference spectroscopy at surface-modified gold electrodes in an ultra-thin-layer spectroelectrochemical cell. Schlereth DD; Mäntele W Biochemistry; 1992 Aug; 31(33):7494-502. PubMed ID: 1510936 [TBL] [Abstract][Full Text] [Related]
10. Thermal fluctuations between conformational substates of the Fe(2+)-HisF8 linkage in deoxymyoglobin probed by the Raman active Fe-N epsilon (HisF8) stretching vibration. Gilch H; Dreybrodt W; Schweitzer-Stenner R Biophys J; 1995 Jul; 69(1):214-27. PubMed ID: 7669899 [TBL] [Abstract][Full Text] [Related]
11. Electrostatic modification of the active site of myoglobin: characterization of the proximal Ser92Asp variant. Lloyd E; Burk DL; Ferrer JC; Maurus R; Doran J; Carey PR; Brayer GD; Mauk AG Biochemistry; 1996 Sep; 35(36):11901-12. PubMed ID: 8794773 [TBL] [Abstract][Full Text] [Related]
12. How different oxidation states of crystalline myoglobin are influenced by X-rays. Hersleth HP; Andersson KK Biochim Biophys Acta; 2011 Jun; 1814(6):785-96. PubMed ID: 20691815 [TBL] [Abstract][Full Text] [Related]
13. Reconstitution of horse heart myoglobin with hemins methylated at 6- or 7-positions: a circular dichroism study. Santucci R; Ascoli F; La Mar GN; Pandey RK; Smith KM Biochim Biophys Acta; 1993 Jul; 1164(2):133-7. PubMed ID: 8329444 [TBL] [Abstract][Full Text] [Related]
14. [Participation of tyrosine residues of myoglobin in the disproportionateness reaction of heme iron (II) and (IV)]. Gorbunov NV; Arduini AA; Grilli A Biull Eksp Biol Med; 1992 Mar; 113(3):255-7. PubMed ID: 1421219 [TBL] [Abstract][Full Text] [Related]
15. Observation of an isotope-sensitive low-frequency Raman band specific to metmyoglobin. Hirota S; Mizoguchi Y; Yamauchi O; Kitagawa T J Biol Inorg Chem; 2002 Jan; 7(1-2):217-21. PubMed ID: 11862557 [TBL] [Abstract][Full Text] [Related]
17. Kinetics and mechanism of *NO2 reacting with various oxidation states of myoglobin. Goldstein S; Merenyi G; Samuni A J Am Chem Soc; 2004 Dec; 126(48):15694-701. PubMed ID: 15571391 [TBL] [Abstract][Full Text] [Related]
18. Structural and spectroscopic studies of azide complexes of horse heart myoglobin and the His-64-->Thr variant. Maurus R; Bogumil R; Nguyen NT; Mauk AG; Brayer G Biochem J; 1998 May; 332 ( Pt 1)(Pt 1):67-74. PubMed ID: 9576852 [TBL] [Abstract][Full Text] [Related]
19. Coherent infrared emission from myoglobin crystals: an electric field measurement. Groot ML; Vos MH; Schlichting I; van Mourik F; Joffre M; Lambry JC; Martin JL Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1323-8. PubMed ID: 11818575 [TBL] [Abstract][Full Text] [Related]
20. Limits of cryofixation as seen by Fourier transform infrared spectra of metmyoglobin azide and carbonyl hemoglobin in vitrified and freeze-concentrated aqueous solution. Mayer E; Astl G Ultramicroscopy; 1992 Sep; 45(2):185-97. PubMed ID: 1440981 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]