These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 15770177)

  • 1. Vibration characteristics of the human spine under axial cyclic loads: effect of frequency and damping.
    Guo LX; Teo EC; Lee KK; Zhang QH
    Spine (Phila Pa 1976); 2005 Mar; 30(6):631-7. PubMed ID: 15770177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of human lumbar intervertebral joints. Experimental and finite-element investigations.
    Kasra M; Shirazi-Adl A; Drouin G
    Spine (Phila Pa 1976); 1992 Jan; 17(1):93-102. PubMed ID: 1536019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influences of denucleation on contact force of facet joints under whole body vibration.
    Guo LX; Zhang M; Teo EC
    Ergonomics; 2007 Jul; 50(7):967-78. PubMed ID: 17510817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Finite element modeling of lumbar spine and study on its biodynamics].
    Guo L; Liu X; Chen W; Mu E
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Oct; 24(5):1084-8. PubMed ID: 18027702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence prediction of injury and vibration on adjacent components of spine using finite element methods.
    Guo LX; Teo EC
    J Spinal Disord Tech; 2006 Apr; 19(2):118-24. PubMed ID: 16760786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibration modes of injured spine at resonant frequencies under vertical vibration.
    Guo LX; Zhang M; Zhang YM; Teo EC
    Spine (Phila Pa 1976); 2009 Sep; 34(19):E682-8. PubMed ID: 19730200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential response to vibration of three forms of scoliosis during axial cyclic loading: a finite element study.
    Jia S; Li Y; Xie J; Tian T; Zhang S; Han L
    BMC Musculoskelet Disord; 2019 Aug; 20(1):370. PubMed ID: 31409412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Response of the Lumbar Spine to Whole-body Vibration Under a Compressive Follower Preload.
    Guo LX; Fan W
    Spine (Phila Pa 1976); 2018 Feb; 43(3):E143-E153. PubMed ID: 28538593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of different frequencies of axial cyclic loading on time-domain vibration response of the lumbar spine: A finite element study.
    Fan W; Guo LX
    Comput Biol Med; 2017 Jul; 86():75-81. PubMed ID: 28511121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence prediction of tissue injury on frequency variations of the lumbar spine under vibration.
    Guo LX; Zhang M; Li JL; Zhang YM; Wang ZW; Teo EC
    OMICS; 2009 Dec; 13(6):521-6. PubMed ID: 19780682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of vibration characteristics of the ligamentous lumbar spine using the finite element approach.
    Goel VK; Park H; Kong W
    J Biomech Eng; 1994 Nov; 116(4):377-83. PubMed ID: 7869712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic response of the idiopathic scoliotic spine to axial cyclic loads.
    Li XF; Liu ZD; Dai LY; Zhong GB; Zang WP
    Spine (Phila Pa 1976); 2011 Apr; 36(7):521-8. PubMed ID: 21079543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element investigation of the effect of nucleus removal on vibration characteristics of the lumbar spine under a compressive follower preload.
    Fan W; Guo LX
    J Mech Behav Biomed Mater; 2018 Feb; 78():342-351. PubMed ID: 29202297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of vibration-related spinal loads by numerical simulation.
    Pankoke S; Hofmann J; Wölfel HP
    Clin Biomech (Bristol); 2001; 16 Suppl 1():S45-56. PubMed ID: 11275342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A finite element method study of the effect of vibration on the dynamic biomechanical response of the lumbar spine.
    Zhu S; Dong R; Liu Z; Liu H; Lu Z; Guo Y
    Clin Biomech (Bristol); 2024 Jan; 111():106164. PubMed ID: 38159326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical effect of constraint in lumbar total disc replacement: a study with finite element analysis.
    Chung SK; Kim YE; Wang KC
    Spine (Phila Pa 1976); 2009 May; 34(12):1281-6. PubMed ID: 19455003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical response of lumbar facet joints under follower preload: a finite element study.
    Du CF; Yang N; Guo JC; Huang YP; Zhang C
    BMC Musculoskelet Disord; 2016 Mar; 17():126. PubMed ID: 26980002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of the modal characteristics of the human spine at resonant frequency using finite element models.
    Guo LX; Teo EC
    Proc Inst Mech Eng H; 2005 Jul; 219(4):277-84. PubMed ID: 16050218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of anteroposterior shifting of trunk mass centroid on vibrational configuration of human spine.
    Guo LX; Zhang M; Wang ZW; Zhang YM; Wen BC; Li JL
    Comput Biol Med; 2008 Jan; 38(1):146-51. PubMed ID: 17931615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Total disc replacement positioning affects facet contact forces and vertebral body strains.
    Rundell SA; Auerbach JD; Balderston RA; Kurtz SM
    Spine (Phila Pa 1976); 2008 Nov; 33(23):2510-7. PubMed ID: 18978591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.