BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 15770233)

  • 1. Genetic architecture of Arabidopsis thaliana response to infection by Pseudomonas syringae.
    Kover PX; Wolf JB; Kunkel BN; Cheverud JM
    Heredity (Edinb); 2005 May; 94(5):507-17. PubMed ID: 15770233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The genetic basis of quantitative variation in susceptibility of Arabidopsis thaliana to Pseudomonas syringae (Pst DC3000): evidence for a new genetic factor of large effect.
    Kover PX; Cheverud J
    New Phytol; 2007; 174(1):172-181. PubMed ID: 17335507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Botrytis cinerea susceptibility loci in Arabidopsis thaliana.
    Denby KJ; Kumar P; Kliebenstein DJ
    Plant J; 2004 May; 38(3):473-86. PubMed ID: 15086796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic dissection of basal defence responsiveness in accessions of Arabidopsis thaliana.
    Ahmad S; Van Hulten M; Martin J; Pieterse CM; Van Wees SC; Ton J
    Plant Cell Environ; 2011 Jul; 34(7):1191-206. PubMed ID: 21414016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudomonas viridiflava and P. syringae--natural pathogens of Arabidopsis thaliana.
    Jakob K; Goss EM; Araki H; Van T; Kreitman M; Bergelson J
    Mol Plant Microbe Interact; 2002 Dec; 15(12):1195-203. PubMed ID: 12481991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of quantitative trait loci controlling symptom development during viral infection in Arabidopsis thaliana.
    Sicard O; Loudet O; Keurentjes JJ; Candresse T; Le Gall O; Revers F; Decroocq V
    Mol Plant Microbe Interact; 2008 Feb; 21(2):198-207. PubMed ID: 18184064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A high-throughput chemical screen for resistance to Pseudomonas syringae in Arabidopsis.
    Schreiber K; Ckurshumova W; Peek J; Desveaux D
    Plant J; 2008 May; 54(3):522-31. PubMed ID: 18248597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringae.
    Laurie-Berry N; Joardar V; Street IH; Kunkel BN
    Mol Plant Microbe Interact; 2006 Jul; 19(7):789-800. PubMed ID: 16838791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative trait loci affecting delta13C and response to differential water availibility in Arabidopsis thaliana.
    Hausmann NJ; Juenger TE; Sen S; Stowe KA; Dawson TE; Simms EL
    Evolution; 2005 Jan; 59(1):81-96. PubMed ID: 15792229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae.
    Kim KC; Fan B; Chen Z
    Plant Physiol; 2006 Nov; 142(3):1180-92. PubMed ID: 16963526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic variation for disease resistance and tolerance among Arabidopsis thaliana accessions.
    Kover PX; Schaal BA
    Proc Natl Acad Sci U S A; 2002 Aug; 99(17):11270-4. PubMed ID: 12172004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effector-Triggered Immune Response in Arabidopsis thaliana Is a Quantitative Trait.
    Iakovidis M; Teixeira PJ; Exposito-Alonso M; Cowper MG; Law TF; Liu Q; Vu MC; Dang TM; Corwin JA; Weigel D; Dangl JL; Grant SR
    Genetics; 2016 Sep; 204(1):337-53. PubMed ID: 27412712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous interaction of Arabidopsis thaliana with Bradyrhizobium Sp. strain ORS278 and Pseudomonas syringae pv. tomato DC3000 leads to complex transcriptome changes.
    Cartieaux F; Contesto C; Gallou A; Desbrosses G; Kopka J; Taconnat L; Renou JP; Touraine B
    Mol Plant Microbe Interact; 2008 Feb; 21(2):244-59. PubMed ID: 18184068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput quantitative luminescence assay of the growth in planta of Pseudomonas syringae chromosomally tagged with Photorhabdus luminescens luxCDABE.
    Fan J; Crooks C; Lamb C
    Plant J; 2008 Jan; 53(2):393-9. PubMed ID: 17971037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative trait loci mapping of floral and leaf morphology traits in Arabidopsis thaliana: evidence for modular genetic architecture.
    Juenger T; Pérez-Pérez JM; Bernal S; Micol JL
    Evol Dev; 2005; 7(3):259-71. PubMed ID: 15876198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The BOS loci of Arabidopsis are required for resistance to Botrytis cinerea infection.
    Veronese P; Chen X; Bluhm B; Salmeron J; Dietrich R; Mengiste T
    Plant J; 2004 Nov; 40(4):558-74. PubMed ID: 15500471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parasite-host fitness trade-offs change with parasite identity: genotype-specific interactions in a plant-pathogen system.
    Salvaudon L; Héraudet V; Shykoff JA
    Evolution; 2005 Dec; 59(12):2518-24. PubMed ID: 16526500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Pseudomonas syringae type III effector tyrosine phosphatase HopAO1 suppresses innate immunity in Arabidopsis thaliana.
    Underwood W; Zhang S; He SY
    Plant J; 2007 Nov; 52(4):658-72. PubMed ID: 17877704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a locus in arabidopsis controlling both the expression of rhizobacteria-mediated induced systemic resistance (ISR) and basal resistance against Pseudomonas syringae pv. tomato.
    Ton J; Pieterse CM; Van Loon LC
    Mol Plant Microbe Interact; 1999 Oct; 12(10):911-8. PubMed ID: 10517031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of initial pathogen density on resistance and tolerance in a polymorphic disease resistance gene system in Arabidopsis thaliana.
    Roux F; Gao L; Bergelson J
    Genetics; 2010 May; 185(1):283-91. PubMed ID: 20142437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.